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DAMAGE DETECTION ALGORITHMS APPLIED TO EXPERIMENTAL AND
NUMERICAL MODAL DATA FROM THE 1-40 BRIDGE

by

Charles Farrar and David Jauregui

ABSTRACT

In the 1960's and 1970's numerous bridges were built in the U.S. with a design similar to those
on Interstate 40 (I-40) over the Rio Grande in Albuquerque, New Mexico. These bridges were
built without structural redundancy and typically have only two plate girders carrying the entire
dead and live loads. Failure of either girder is assumed to produce catastrophic failure of the
bridge. The Federal Highway Administration (FHWA) and the National Science Foundation
(NSF) have provided funds to New Mexico State University (NMSU) through the New Mexico
State Highway and Transportation Department (NMSH&TD) and The Alliance For Transportation
Research (ATR) for evaluation and testing of the 1-40 Bridges.

Because the I-40 Bridges over the Rio Grande were to be razed during the summer of 1993, the
investigators were able to introduce damage into the structure in order to test various damage
identification methods. To support this research effort, NMSU contracted Los Alamos National
Laboratory (LANL) to perform experimental modal analyses, and to develop experimentally
verified numerical models of the bridge. Previous reports (LA-12767-MS and LLA-12979-MS)
summarize the results of the experimental modal analyses and the results obtained from numerical
modal analyses conducted with finite element models. This report summarizes the application of
five damage identification algorithms reported in the technical literature to the previously reported
experimental and numerical modal data.

Damage or fault detection, as determined by changes in the dynamic properties or response of
structures, is a subject which has received considerable attention in the technical literature
beginning approximately 30 years ago, and with a significant increase in reported studies appearing
during the last five years. The basic idea is that modal parameters, notably frequencies, mode
shapes, and modal damping, are a function of the physical properties of the structure (mass,
damping, stiffness, and boundary conditions). Therefore, changes in physical properties of the
structure, such as its stiffness or flexibility, will cause changes in the modal properties. Early
methods for detecting damage based on changes in the structure's dynamic properties primarily
examined changes in the resonant frequencies. However, this parameter has proved to be
insensitive to lower levels of damage and does not provide a means to locate the damage. Current
methods that have shown promise in both detecting damage at an early stage and locating the
damage examine changes in the mode shapes of the structure. '

The major contribution of this study is a direct comparison of five damage identification methods

that were applied to the same experimental and numerical modal data. The experimental data were
measured on an actual highway bridge. The numerical data was generated from finite element
models of the same bridge that had been benchmarked against the measured response. With the
numerical models many more damage scenarios could be investigated to further study the relative
accuracy of the various damage identification methods. In all cases, the numerical studies were
intended to simulate the measurement techniques that would be used if these methods were to be
incorporated into an on-line monitoring system for highway bridges. This restriction implies that
dynamic properties must be measured from ambient traffic-induced vibration sources.




I. INTRODUCTION

In the 1960's and 1970's numerous bridges were built in the U.S. with a design similar to those
on Interstate 40 (I-40) over the Rio Grande in Albuquerque, New Mexico, Fig. 1. These bridges
were built without structural redundancy and typically have only two plate girders carrying the
entire dead and live loads. Failure of either girder is assumed to produce catastrophic failure of the
bridge. For this reason the bridges, which have been found to exhibit fatigue cracking from out-
of-plane bending of the plate girders, are referred to as fracture-critical bridges. The Federal
Highway Administration (FHWA) and the National Science Foundation (NSF) have provided
funds to New Mexico State University (NMSU) through the New Mexico State Highway and
Transportation Department (NMSH&TD) and The Alliance For Transportation Research (ATR) for
evaluation and testing of the existing fracture-critical bridges over the Rio Grande. The project is
intended to develop and field test new nondestructive testing technology and to create a detailed
bridge management data base for this class of bridges. The NSF is providing funds to investigate
the seismic capacity of bridges such as these that were built prior to the adoption of modern seismic
design standards.

Because the bridges over the Rio Grande were to be razed during the summer of 1993, the
investigators were able to introduce simulated fatigue cracks, similar to those observed in the field,
into the structure in order to test various damage-identification methods and to observe the changes
in load paths through the structure caused by the cracking. To support this research effort, NMSU
contracted Los Alamos National Laboratory (LANL) to perform experimental modal analyses, and
to develop experimentally verified numerical models of the bridge. Scientists from the LANL's
Condensed Matter and Thermal Physics Group (MST-10) applied state-of-the-art sensors and data
acquisition software for the modal tests. Engineers from the LANL's Engineering Analysis Group
(ESA-EA) conducted ambient and forced vibration tests to verify detailed and simplified finite
element models of the bridge. Forced vibration testing was done in conjunction with engineers
from Sandia National Laboratory (SNL) who provided and operated a hydraulic shaker.

This report is the third in a series that summarizes the work performed at LANL on the I-40 Bridge
project. The first report, "Dynamic Characterization and Damage Detection in the I-40 Bridge Over
the Rio Grande,” (Farrar, et al., 1994) summarizes the experimental modal analysis test procedures
and the results that were obtained from these tests. This report also contains a detailed review of
the literature on bridge testing and a brief review of the literature on the application of damage
identification methods to bridge structures. Results of the testing reported in this document have
been forwarded to researchers at the Univ. of Houston, the Univ. of Colorado, Stanford Univ.,
Texas A&M Univ., SNL and NMSU. The second report, "Finite Element Analysis of the I-40
Bridge Over the Rio Grande," (Farrar, et al., 1996) summarizes the results of numerical models of
the bridge and compares results obtained with these models to the measured dynamic properties of
the bridge. The benchmarked finite element models (FEM) will now be used to make an extensive
comparison of various damage-identification algorithms.

In this report five damage identification methods that have been reported in the technical literature
were programmed in MATLAB (The Mathworks (1992)) and then applied to the experimental
modal data measured on the I-40 Bridge. Subsequently, the same methods were applied to
numerically generated modal data obtained from the finite element models previously mentioned.
Once benchmarked against measured modal data from the 1-40 Bridge in both its undamaged and
damaged condition, the finite element models can be used to investigate a wide variety of damage
scenarios.

A future goal of a comprehensive bridge management system is to have a self-monitoring bridge
where sensors feed measured responses (accelerations, strains, etc.) into a local computer. This
computer would, in turn, apply a damage identification algorithm to this data to determine if the
bridge has significantly deteriorated to the point where user safety may be jeopardized. The local
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Fig. 1. I-40 Bridges over the Rio Grande in Albuquerque, New Mexico.



computer could then contact a central monitoring facility (via cellular phone) to notify the
appropriate maintenance or safety officials of the bridge's current condition. If such a monitoring
system is to be practical, it will have to identify the dynamic properties of the structure from
ambient, traffic-induced vibration. To this end, all dynamic properties that have been identified by
finite element analyses were determined without use of the measured input to the structure.

II. SUMMARY OF DAMAGE DETECTION METHODS APPLIED TO BRIDGES

An extensive, recent survey of bridge failures in the United States since 1950 is presented by
Shirole and Holt (1991). These authors point out that recent responses of engineers to bridge
failures have been reactive. Bridge design modifications and inspection program changes are often
made in response to catastrophic failures. The collapse of the Tacoma Narrows Bridge a half
century ago is, of course, classic and has led to the inspection and modification of other
suspension bridges. The widespread introduction of systematic bridge inspection programs was
directly attributed by Shirole and Holt to the catastrophic bridge collapse at Point Pleasant, WV, in
1967. These authors point out that there is no national data base that summarizes bridge failures.
Design modifications for seismic response of bridges have been made as a direct consequence of
damage sustained by highway bridges during the 1971 San Fernando Earthquake (Gates, 1976).

At present, bridges are generally rated and monitored during biennial inspections, largely using
visual inspection techniques that are discussed by White, et al. (1992). There is the possibility that
damage could go undetected at inspection or that growth of cracks in load-carrying members to
critical levels, for instance, could occur between inspection intervals (see Biswas, et al. (1990)).
Sudden damage leading to bridge collapse also occurs due to collision, as evidenced by the 1993
AMTRAK railroad bridge collapse in the Southeastern US involving collision of the supporting
pier by a barge. (According to statistics presented by Shirole and Holt, more than 13% of
identified failures of US bridges since 1950 are attributed to collision). Based on these findings, it
appears that a quantitative, possibly continuous, mechanism of bridge damage detection is
appropriate to prevent or, at least, mitigate the effects of future bridge failures. As well, use of an
active damage detection system may be used to detect sudden significant damage to the bridge
structure caused by collision, and trigger a system to close the bridge to traffic.

The interest in the ability to monitor a structure and detect damage at the earliest possible stage is
pervasive throughout the civil, mechanical, and aerospace engineering communities. Current
damage detection methods are either visual or localized experimental methods such as acoustic or
ultrasonic methods, magnet field methods, radiographs, eddy-current methods and thermal field
methods. All these experimental methods require that the vicinity of the damage is know a priori
and that the portion of the structure being inspected is readily accessible. Subjected to these
limitations, these experimental methods can detect damage on or near the surface of the structure.
The need for more global damage detection methods that can be applied to complex structures has
led to the development of damage identification methods that examine changes in the vibration
characteristics of the structure. ’

Global damage or fault detection, as determined by changes in the dynamic properties or response
of structures, is a subject which has received considerable attention in the technical literature
beginning approximately 30 years ago. A significant increase in reported studies has appeared
during the last five years. These damage detection methods can be classified into four levels:

1. Identify that damage has occurred,

2. Identify that damage has occurred and determine the location of damage,

3. Identify that damage has occurred, locate the damage, and estimate its severity, and



4. Identify that damage has occurred, locate the damage, estimate its severity, and
determine the remaining useful life of the structure.

The basic premise of the global damage detection methods that examine changes in the dynamic
properties is that modal parameters, notably frequencies, mode shapes, and modal damping, are a
function of the physical properties of the structure (mass, damping, stiffness, and boundary
conditions). Therefore, changes in physical properties of the structure, such as its stiffness or
flexibility, will cause changes in the modal properties. Early methods for detecting damage based
on changes in the structure's dynamic properties primarily examined changes in the resonant
frequencies. However, this parameter has proven to be insensitive to lower levels of damage and
does not provide a means to locate the damage. Current methods that have shown promise in both
detecting damage at an early stage and locating the damage examine changes in the mode shapes of
the structure.

The summary of the literature presented below has been limited to damage detection methods
applied to bridges. These methods provide damage detection levels ranging from one to three. A
more thorough summary of damage identification from changes in dynamic properties of structures
can be found in Doebling, et al. (1996).

A detailed survey of the technical literature and interviews of selected experts to determine the state-
of-the-art of the damage detection field (using such modal changes) as of 1979 was presented by
Richardson (1980). The survey focused on structural integrity monitoring for nuclear power
plants, large structures, rotating machinery and offshore platforms, with by far the largest amount

~of literature associated with rotating machinery. The author stated that while monitoring of overall
vibration levels for rotating machinery had become commonplace, attempts at relating structural
damage to measured modal changes was still in its primitive stages. While modal testing of
suspension bridges is discussed, the work was for system identification (i.e., determination of
mode shapes, modal damping and resonant frequencies) and not specifically directed at damage
determination.

Since 1979, numerous studies involving the development and application of damage detection
techniques have been reported for bridge structures. Salane, et al. (1981) examined changes in
dynamic properties (damping and resonant frequencies) of a 3-span highway bridge during a
fatigue test as a possible means of detecting structural deterioration caused by fatigue cracks in the
bridge girders. The authors found that changes in damping were inconsistent and could not be
used to detect fatigue damage in bridges. Changes in vibration signatures (mechanical impedance
plots, Fourier transform of velocity response normalized by the Fourier transform of force input)
were also found to be poor indicators of structural deterioration caused by fatigue. Changes in
experimentally determined mode shapes were found to be more sensitive indicators of damage.
For these tests sinusoidal excitation was applied with an electro-hydraulic actuator.

Kato and Shimada (1986) performed ambient vibration measurements on an existing prestressed
concrete bridge during a test to failure. A reduction in natural frequencies could be detected as a
statically applied load approached the ultimate load. Significant changes in resonant frequencies
were associated with yielding of the prestressing tendons. However, damping values were not
affected significantly. The ambient vibration method of system identification was used.

Turner and Pretlove (1988) performed a numerical analysis of the vibration response of a simple
beam representation of a bridge subjected to random traffic loading. The authors suggested that
measurement of the response of a bridge to traffic appeared to provide a method of determining
resonant frequencies. These frequencies could then be monitored: a 5% change would indicate
- changes in the bridge condition beyond those that can be attributed to environmental effects. The
motivation of the work was to develop a structural condition monitoring system without a
measured source of vibrations.




Spyrakos, et al. (1990) performed an experimental program on test beams which were designed to
respond in a dynamically similar fashion to actual bridges. Each beam was given different damage
scenarios (type, location, degree), on which low-level free vibration tests were performed. The
authors found a definite correlation between level of damage and dynamic characteristics of the
structure. It was found that frequency change may be insufficient to be a useful indicator of
structural safety (less than 5% change in frequency was associated with "critical" damage).
However, the study suggests that the method of relating changes in resonant frequencies to damage
level may be applicable to more severely damaged structures, and can give an indication of
remaining serviceability. The authors state that mode shapes may be used to locate damage if the
input to the structure is measured.

Mazurek and DeWolf (1990) again presented strong arguments for the need of a continuous
automated vibration monitoring system for highway bridges, citing several unexpected collapses
and near collapses of bridges (the collapse of one Rhode Island bridge was prevented when a
passerby observed severe cracking of a primary girder at mid span). In their experimental study of
a bridge monitoring technique, the authors performed laboratory model tests on a 2-span aluminum
plate-girder bridge, with vibrations induced by vehicular excitation. The authors found that major
structural degradation can cause significant changes to both resonant frequencies and mode shapes.
The greatest changes in mode shapes occur in the vicinity of the structural defect (e.g., crack).
Therefore, once it is determined that a structural defect is present, mode shapes could be used to
locate the defect.

Biswas, et al. (1990) discussed the state of degradation of bridges in the U.S., emphasizing that
the current 24-month inspection interval for highway bridges has two major drawbacks: Bridge
failure could occur between inspection intervals; and incipient failures may go unnoticed during
inspection. They performed modal testing on a 2-span continuous composite bridge in undamaged
and "damaged" condition. "Damage" consisted of a large fatigue crack simulated by unfastening a
set of bolts at a steel girder splice connection. Changes in frequency response functions (FRFs,
Fourier transform of a response measurement normalized by the Fourier transform of a reference
measurement) obtained by using a shaker were found to be detectable and quantifiable. Modal
frequencies showed small but consistent drops caused by the presence of the simulated crack.
Time histories and their corresponding Fourier spectra showed changes, but these changes were
difficult to correlate with damage. Changes in mode shapes as quantified by the modal assurance
criteria (see Eq. 1 in Sec. IIL.B.3.b) were found to be the best indicator of damage.

In related work by the same authors (Samman, et al., 1991), a plastic scale model of a typical
highway bridge was used to investigate the change in FRF signals caused by the development of
girder cracks. The authors used a procedure from the field of pattern recognition to accentuate the
differences in the FRFs between cracked and uncracked bridges. The method also provided some
crack location information.

Jain (1991), also using modal methods, investigated the performance characteristics of a
continuously deteriorating railway bridge using a locomotive run at constant speed for the
excitation source. Jain concluded that modal parameters, particularly frequencies and mode
shapes, can furnish only general information on the damage state of the structure: deviation in these
parameters indicates that damage has occurred, but not its local extent or underlying cause.

Tang and Leu (1991) performed experiments on a defective prestressed concrete girder bridge.
They found that mode shape changes may be a more effective indicator for damage detection in
bridges than frequency shifts. To be effective for damage detection, they state that a frequency
shift on the order of 0.01 Hz must be detectable. Bridge excitation was accomplished by the step
relaxation method. -



Raghavendrachar and Aktan (1992) performed impact testing on a 3-span reinforced concrete
bridge with a goal of detecting local or obscure damage, as opposed to severe, global damage. The
authors concluded that modal parameters may not be reliable as indicators of local damage if only
the first few modes are determined. For this type of damage, modal information for higher modes
would be required. However, the authors examine changes in flexibility as determined from mode
shapes and resonant frequencies and found that flexibility was a much more sensitive indicator of
damage, particularly when only a limited number of modes are available.

Law, et al. (1992) tested a one-fifth scale model of a reinforced concrete beam-slab bridge deck.
Damage was introduced by applying static loads until failure. Ambient vibration sources were
used to excite the bridge during dynamic tests. Frequency response functions were calculated
between various measurements locations. Sensitivity equations were developed that relate the
changes in mass, stiffness, and damping to changes in the frequency response functions. Results
of these analyses showed that changes in the FRFs revealed the damage that was introduced by the
static loading.

An extensive survey and analysis of structural damage detection was prepared by Kim and Stubbs
(1993) as part of the I-40 bridge project. The authors assessed the relative impact of model
uncertainty on the accuracy of nondestructive damage detection in structures. The authors applied
their damage index approach analytically to a plate-girder bridge and a 3-dimensional truss-type
bridge.

Toksoy and Aktan (1994) applied a damage detection method that examines changes in flexibility
to a three span concrete deck bridge. Multi-reference impact testing was used to measure the
resonant frequencies and the mass-normalized mode shapes of the structure. The authors also
discuss methods that use finite element analysis in the event that a baseline undamaged
measurement is not available. They use the measured flexibility matrix to assign a condition index
to a bridge. By comparing cross-sectional deflection profiles from the flexibility matrices, they are
able to detect structural damage and anomalies. Results are presented both with and without
original data. When original data is not available, the measured flexibility is compared to FEM
flexibility, with anomalies in the deflection profile of the measured flexibility used to locate
damage. When a baseline data set is available, the deflection profiles are compared directly. These
authors point out that problems related to long term sensor and data-acquisition reliability must be
overcome before it will be possible to field a continuous health-monitoring system.

Aktan, et al. (1994) discuss the application of damage detection methods based on modal testing to
seven highway bridges, particularly a three-span steel-stringer bridge and a steel truss bridge.
Changes in flexibility based on measured resonant frequencies and mass-normalized mode shapes
were used to assess damage. Accuracies of the flexibility approximations obtained from modal
properties were determined from static load testing. Multi-reference impact testing was again used
to determine the resonant frequencies and the mass-normalized mode shapes. Approximately
twenty mode were necessary to accurately define the bridges' flexibility matrix. They estimated
that the error in measured flexibility due to modal truncation was about 2% after 18 modes had
been included.

Aktan, et al. (1995) summarize a mobile field testing laboratory developed for damage detection in
bridges. This laboratory will allow strain data to be collected along with multi-input/multi-output
structural dynamics data.

Mayes (1995) applied the Structural Translation and Rotation Error Checking (STRECH)
algorithm to modal data from the I-40 Bridge. This method examines changes in displacement
after damage normalized by the before damage value for a given load, referred to as the stretch
ratio, to locate areas where the stiffness of the structure has been reduced. The author applied this
method to rotational displacements determined by curve-fitting the individual translational mode




shapes of the bridge, and to static flexibility shapes determined from the first six resonant
frequencies and measured mass-normalized mode shapes. Damage was identified and located for
the more severe cases.

Stubbs, et al. (1995) applied a damage index method to mode shape data from the I-40 Bridge tests
and was able to identify and locate the defect for even the most benign damage case. The method
used only the first three modes, which were determined from ambient vibration data reduction
techniques, and did not require the modes to be mass normalized. This method is based on
measuring changes in the strain energy stored in the beam-like structure before and after damage
has occurred as determined from changes in the curvature of the mode shapes.

James, et al. (1995) present the results of two damage location techniques applied to data from the
1-40 Bridge. The STRECH technique is used to locate differences in stiffness between the
measurements and the FEM on a mode-by-mode basis. The MAtriX COmpletioN (MAXCON)
technique is a method for completing the rank of the measured mass matrix such that the mass
matrix sparsity is enforced. The measured stiffness matrix is then computed from this rank-
enriched measured mass matrix. The results of this test indicate that the STRECH technique gives a
better global indication of damage, but that the MAXCON technique appears to be more robust to
measurement errors and more applicable to measured dynamic data.

Liang, et al. (1995) apply a damage identification method based on modal energy transfer ratio
(ETR) to data obtained on the steel Peace Bridge over the Niagara River near Buffalo, NY.
Because no damage could be added to the bridge, the authors used the test as an opportunity to
study the repeatability of the necessary parameters, and to observe the changes in the structure
caused by construction repair work. Accelerometer measurements were used in the testing, and the
excitation was provided using both impact hammer and ambient signals from automobile traffic. It
was demonstrated that the ETR has the highest repeatable signal-to-noise ratio of any of the
damage measures considered. The impact hammer tests yielded better overall results than the
ambient input tests.

Doebling (1995) presents the results of a flexibility-based damage analysis on the I-40 Bridge data.
The results indicate that the flexibility coefficients computed using just the measured modes can
provide an accurate indication of the location of damage. As with most other damage detection
techniques based on modal vibration data, the damage location results are much more significant
when the damage causes a large change in structural stiffness as compared to the results from a
slight change in structural stiffness. The results are also shown to improve when the estimated
residual flexibility coefficients are included in the computation of the measured flexibility.

Zhang and Aktan (1995) use changes in curvatures of the uniform load surface (the deformed
shape of the structure when subjected to a uniform load), calculated using the uniform load
flexibilities, to identify damage in a numerical simulation of a three-span concrete deck supported
by steel stringers. Results from impact and forced vibration modal tests were used to benchmark a
numerical model of the bridge. Damage was introduced in the numerical model by changing the
stiffness of an element in the model. The change in curvature was shown to be a sensitive indicator
of this local damage. Changes in other modal parameters (resonant frequencies and mode shapes)
were shown be insensitive to the damage.

Simmermacher, et al. (1995) examine the effects of finite element mesh density on successful
application of the matrix update algorithms. This study was motivated by the fact that large models
are necessary to reduce discretization error in the finite element models. Matrix updating
procedures inherently require model reduction and/or mode shape expansion, which destroy the
load paths and therefore decreases the ability of such algorithms to locate damage at the element
level. This research examined the trade-offs between large and small FEMs for application of the



minimum rank perturbation theory to the I-40 Bridge data. Small models were found to work well
for damage detection if they can be adjusted to accurately predict the mode shapes of the structure.

Summarizing, it appears that over the past fifteen years there has been repeated application of the
use of modal properties of bridges to the fields of damage detection and structural health
monitoring, much of the work having been motivated by several catastrophic bridge failures.
Earlier work utilized primarily modal frequency changes to detect damage, but others have lately
shown that frequency changes are insufficient, and that changes in mode shapes are more sensitive
indicators and might be useful for detection of the defect location as well. Damping changes have
not been found useful for damage detection in bridges. Finally, other more sensitive methods of
examining modal properties for damage are being developed. These newer methods examine
changes in flexibility matrices determined from modal parameters, changes in the strain energy
stored in a structure, and changes in mode shape curvature.

III. DESCRIPTION OF EXPERIMENTAL AND NUMERICAL TEST DATA

The experimental data used in this study came from tests performed on one of the I-40 Bridges
over the Rio Grande in Albuquerque, NM. A summary of the test procedures and results is given
below. Mode shape data obtained from these tests are summarized in Appendix A. For a more
detailed summary of the tests performed on the 1-40 Bridge and the results that were obtained, the
reader is referred to Farrar, et al. (1994). Numerical data used in this study were generated with
finite element models of the same 1-40 Bridge. These models are also summarized below, and a
more detailed discussion of the finite element models can be found in Farrar, et al. (1996).

III. A. I-40 Bridge Geometry

The I-40 Bridges over the Rio Grande that were tested consist of twin spans (there are separate
bridges for each traffic direction) made up of a concrete deck supported by two welded-steel plate
girders and three steel stringers. Loads from the stringers are transferred to the plate girders by
floor beams located at 20-ft intervals. Cross-bracing is provided between the floor beams. Figure
2 shows an elevation view of the portion of the bridge that was tested. The cross-section geometry
of each bridge is shown in Fig. 3, and Fig. 4 shows the actual substructure of the bridge.
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Fig.2. Elevation view of the portion of the eastbound bridge that was tested.
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Each bridge is made up of three identical sections. Except for the common pier located at the end
of each section, the sections are independent. A section has three spans; the end spans are of equal
length, approximately 131 ft, and the center span is approximately 163 ft long. Five plate girders
are connected with four bolted splices to form a continuous beam over the three spans. The
portions of the plate girders over the piers have increased flange dimensions, compared with the
midspan portions, to resist the higher bending stresses at these locations. Connections that allow
for thermal expansion, Figs. 5 and 6, as well as connections that prevent longitudinal translation,
Fig. 7 are located at the base of each plate girder, where the girder is supported by a concrete pier
or abutment. These connections are labeled "exp" and "pinned"” in Fig. 2. When the concrete deck
was removed, no shear studs were found on the top flanges of the plate girders or stringers.

All subsequent discussions of the bridge will refer to the bridge carrying eastbound traffic,
particularly the three eastern spans, which were the only ones tested.

III. B. I-40 Bridge Test Data

This section provides a brief summary of the experimental results that were obtained from forced
vibration tests performed on the 1-40 Bridge. Forced vibration tests were performed when the
bridge was in an undamaged state and after each of four incremental levels of damage had been
introduced.

ITI1. B. 1. Data Acquisition

The data acquisition system used in these tests consisted of a computer workstation which
controlled 29 input modules and a signal processing module. The workstation was also the
platform for a commercial data-acquisition/signal-analysis/modal-analysis software package. The
input modules provided power to the accelerometers and performed analog-to-digital conversion of
the accelerometer voltage-time histories. The signal-processing module performed the needed fast
Fourier transform calculations. A 3500-watt AC generator was used to power this system in the
field.

Two sets of integrated-circuit, piezoelectric accelerometers were used for the vibration
measurements. A coarse set of measurements was first made with twenty-six PCB model 336C
accelerometers. These accelerometers were mounted on one-inch square aluminum mounting
blocks that were dental-cemented to the inside web of the plate girder at mid-height and at the axial
locations shown in Fig. 8. Within a span the three blocks were equally spaced in the axial
direction. Accelerometers were mounted on the blocks with a 10-32 stud, in the global Y direction
as shown in Fig. 8. These accelerometers had a nominal sensitivity of 1 V/g, a specified frequency
range of 1-2000 Hz, and an amplitude range of +4 g's. Twelve-inch-long 50-Ohm MicroDot
cables attached to two conductor, PVC-jacketed 20-gauge cables ranging from 70 ft to 291 ft
connected the accelerometers to the input modules. The cables were supported by the catwalks
located along each plate girder, tied off, and dropped down to the van located under the bridge that
housed the data acquisition system.

Sampling parameters were specified that calculated the FRFs and cross-power spectra (CPS) from
32-s time windows discretized with 1024 samples. Therefore, the FRF and CPS were calculated
for frequency ranges of 0-12.5 Hz. Thirty averages were used to calculate the FRF and CPS. A
frequency resolution of 0.03125 Hz, was obtained for the FRF and CPS. Hanning windows were
applied to the time signals to minimize leakage, and AC coupling was specified to minimize DC
offsets.

A more refined set of measurements was made near the damage location. Eleven Endevco 7751-
500 accelerometers with a nominal sensitivity of 500 mV/g, a frequency range of 0.4 to 1500 Hz ,
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and an amplitude range of 10 g's were placed in the global Y direction at a nominal spacing of 16
ft along the midspan of the north plated girder. All accelerometers were located at midheight of the
girder. The actual spacing of these accelerometers is shown in Fig. 9. When the dental cement
cured, some of the blocks used to mount these accelerometers were no longer vertical. X-3 was
tilted 3.3 degrees to the east, X-5 was tilted 1.2 degrees to the west, X-8 was tilted 1.2 degrees to
the east, and X-10 was tilted 1.8 degrees to east. The same data acquisition system, similar
wiring, and identical sampling parameters as those used with the coarse accelerometer set were
again used with this refined set of accelerometers.

III. B. 2. Forced Vibration Testing, Undamaged

From August 31st through September 2nd, 1993, a series of forced vibration tests were conducted
on the undamaged bridge. Eastbound traffic had been transferred to a new bridge just south of the
one being tested. The westbound traffic continued on the original westbound bridge. SNL
provided a hydraulic shaker that generated the measured force input. Excitation from traffic on the
adjacent bridges could be felt when the shaker was not running. Wind, although not measured,
was not considered significant during these tests.

The Sandia shaker consists of a 21,700-1b reaction mass supported by three air springs resting on
top of 55-gallon drums filled with sand. A 2200-1b hydraulic actuator bolted under the center of the
mass and anchored to the top of the bridge deck provided the input force to the bridge. Figure 10
- shows the shaker in place on the bridge. A random-signal generator was used to produce a
uniform random signal that was band-passed between 2 Hz and 12 Hz before inputting the signal
to an amplifier. The amplifier gain was controlled manually to provide an approximately 2000-1b
peak, random force input. An accelerometer mounted on the reaction mass was used to measure
the force input to the bridge. This indirect force measurement gives the total force transferred to
the bridge through the 55-gallon drums as well as the actuator. The shaker was located over the
south plate girder directly above point S-3 in Fig. 8. The accelerometer used to measure force was

15



North Plate Girder

8 36W182 or
36W150 Spaced
East @ Nominal 20'-41/2"

Woest

| 163" !

r Splice —’I |1—30“ Splice l
I I 1 I I N

41 %30 Xa | X X7 i\g pes e X3 x-‘g

Damage
Location

16-83/g" | 151" 1 16%9" [ qsiqgasy

-]
1% 18217 Vo1, eyt 1oete) 16'-67/5" | 1551/
8 a4 8 4 8 8

Fig. 9. Locations of the refined set of accelerometers.

Fig. 10. The Sandia shaker in place on the 1-40 Bridge.
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oriented such that a positive force corresponded to the positive global Y direction shown in Fig. 8.
A more detailed summary of the Sandia shaker can be found in Mayes and Nusser (1994).

Forced vibration tests using the coarse set of accelerometers were conducted with a random input
so that ESA-EA personnel could perform experimental modal analyses of the bridge. In this
context experimental modal analysis refers to the procedure whereby a measured excitation
(random, sine, or impact force) is applied to a structure, and the structure's response (acceleration,
velocity, or displacement) is measured at discrete locations that are representative of the structure's
motion. Both the excitation and the response time histories are transformed into the frequency
domain in the form of FRF (the Fourier transform of the response normalized by the Fourier
transform of the input). Modal parameters (resonant frequencies, mode shapes, modal damping)
can be determined by curve-fitting a Laplace domain representation of the equations of motion to
the measured frequency domain data (Ewins, 1985).

A rational-fraction polynomial, global, curve-fitting algorithm in a commercial modal analysis
software package (Structural Measurements Systems, 1987) was used to fit the analytical models
to the measured FRF data and to extract resonant frequencies, mode shapes, and modal damping
values. Figures 11 through 16 show the first six modes of the undamaged bridge identified from
these data. Mode shape amplitudes and phases along with resonant frequencies and modal
damping values, corresponding to the mode shown in Figs. 11 through 16, are summarized in
Appendix A, Table A-6.

Immediately after the forced vibration tests with the coarse accelerometers were complete, the
random excitation tests were repeated using the refined set of accelerometers. For these tests the
input was not monitored and mode shapes were determined from amplitude and phase information
contained in CPS of the various accelerometer readings relative to the accelerometer X-3 shown in
Fig. 9. Determining mode shapes in this manner, as discussed by Bendat and Piersol (1980),
simulates the methods that would have to be employed when the response to ambient excitations
are measured. The amplitude of a mode corresponding to location X-3 was obtained from the
power spectrum of the signal measured at this location. The mode shape data obtained from this
set of accelerometers for the first three modes of the bridge in the undamaged state are tabulated in
Appendix A, Table A-1.

III. B. 3. Forced Vibration Testing, Damaged

From September 3rd through 11th, 1993, four different levels of damage were introduced into the
middle span of the north plate girder. Forced vibration tests, with the coarse and refined sets of
accelerometers, similar to those done on the undamaged structure were repeated after each level of
damage had been introduced. Weather conditions during these tests were similar to those reported
for the forced vibration tests. Background sources of vibration were also similar.

III. B. 3. a. Damage Description

The damage that was introduced was intended to simulate fatigue cracking that has been observed
in plate-girder bridges. This type of cracking results from out-of-plane bending of the web and
usually begins at welded attachments to the web such as the seats supporting the floor beams.
Four levels of damage were introduced to the middle span of the north plate girder close to the seat
supporting the floor beam at midspan. Damage was introduced by making various torch cuts in the
web and flange of the girder. The first level of damage consisted of a two-foot-long, 3/8-in-wide
cut through the web centered at midheight of the web. Next, this cut was continued to the bottom
of the web . During this cut the web, on either side of the cut, bent out of plane approximately 1
in. The flange was then cut halfway in from either side directly below the cut in the web. Finally,
the flange was cut completely through leaving the top 4 ft of the web and the top flange to carry the
load at this location. The various levels of damage are shown in Figs. 17 through 20.
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Fig. 11. First flexural mode identified from undamaged forced vibration data, test t16tr.
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Fig. 12. First torsional mode identified from undamaged forced vibration data, test t16tr.
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Fig. 13. Second flexural mode identified from undamaged forced vibration data, test t16tr.
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Test t16tr
Mode 4
F=408Hz

Fig. 14. Third flexural mode identified from undamaged forced vibration data, test t16tr.
Test t16tr

Mode 5
F=4.17 Hz

Fig. 15. Second torsional mode identified from undamaged forced vibration data, test t16tr.

Test t16tr
Mode 6

Fig. 16. Third torsional mode identified from undamaged forced vibration data, test t16tr.
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Fig. 17. First stage of damage: two-foot cut at the center of the web.

Fig. 18. Second stage of damage: six-footcut from the center of the web to the bottom flange.
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Fig. 19. Third stage of damage: six-foot cut in the web and cuts through half the bottom flange on
either side of the web.

Fig. 20. Fourth stage of damage: six-foot cut in the web and cut through the entire bottom flange.
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II1. B. 3. b. Results

Experimental modal analyses using both the coarse and refined sets of accelerometers were
repeated after each level of damage had been introduced. The experimental procedures and data
acquisition equipment used were identical to those used for the undamaged forced vibration tests
summarized in Section III. B. 2. Table I summarizes the coarse accelerometer, forced-vibration
tests that were performed.

FRF magnitudes for locations S-3 and N-7 are plotted for each level of damaged and compared to
the similar FRFs measured on the undamaged structure in Figures 21 and 22, respectively. The
figures show that little change in the resonant frequencies and widths of the resonance (damping)
occur until the final stage of damage is introduced.

Table II summarizes the resonant frequency and modal damping data obtained during each modal
test of the damaged bridge using the coarse set of accelerometers. Also shown in Table II are
similar results from the undamaged forced vibration test. No change in the dynamic properties can
be observed until the final level of damage is introduced. At the final level, test t22tr, the resonant
frequencies for the first two modes have dropped to values 7.6 and 4.4 percent less, respectively,
than those measured during the undamaged tests. For modes where the damage was introduced
near a node for that mode (Modes 3 and 5) no significant changes in resonant frequencies can be
observed.

Mode shape data from the coarse set of accelerometers, corresponding to each level of damage, are
summarized in Appendix A, Tables A-7 through A-10. A modal assurance criterion (MAC),
sometimes referred to as a modal correlation coefficient (Ewins, 1985) was calculated to quantify
the correlation between mode shapes measured during different tests. The MAC makes use of the

TABLE I
Summary of Forced Vibration Tests (Coarse Set of Accelerometers)
Test Frequency No. of Averages Date/Time Dynamic Range Damage
Designation Range (Hz) Accelerometers/ Description
Force Transducer
tl6tr 0-12.5 30 Sept. 2, 11:08-]1 Vp, 3.16 Vp undamaged
11:33 AM
t17tr 0-12.5 30 Sept. 2, 2:25-11 Vp, 3.16 Vp 2-ft cut at the
2:40 PM center of the
web
t18tr 0-12.5 30 Sept. 3, 12:0012 Vp, 6.31 Vp 6-ft cut in the
-12:46 PM web to the
bottom flange
t19tr 0-12.5 30 Sept. 7, 9:32-2 Vp, 6.31 Vp bottom 6 ft of
9:55 AM the web and half
' of the flange cut
t22tr 0-12.5 30 Sept. 8, 9:52-3.98 Vp, 6.31}{bottom 6 ft of
10:17 AM Vp the web and
entire flange cut
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Fig. 22. FRF magnitude measured at location N-7 during each of the damaged forced vibration tests compared with the FRF
measured at location N-7 during the undamaged forced vibration test (test t16tr).



TABLE 11
Resonant Frequencies and Modal Damping Values Identified from Undamaged and Damaged
Forced Vibration Tests Using the Coarse Set of Accelerometers
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Test Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ |Freq. (Hz)/ | Freq. (Hz)/
Damp. (%) | Damp. (%) | Damp. (%) |Damp. (%) |Damp. (%) | Damp. (%)
tl6tr 2.48/ 2.96/ 3.50/ 4.08/ 4.17/ 4.63/
(forced, 1.06 1.29 1.52 1.10 0.86 0.92
undamaged)
t17tr 2.52/ 3.00/ 3.57/ 4.12/ 4.21/ 4.69/
(foxiced, a)fter 1.20 0.80 0.87 1.00 1.04 0.90
st cut
t18tr 2.52/ 2.99/ 3.52/ 4.09/ 4.19/ 4.66/
(forced, after 1.33 0.82 0.95 0.85 0.65 0.84
2nd cut)
t19tr 2.46/ 2.95/ 3.48/ 4.04/ 4.14/ 4.58/
(forced, after 0.82 0.89 0.92 0.81 0.62 1.06
3rd cut)
t22tr 2.30/ 2.84/ 3.49/ 3.99/ 4.15/ 4.52/
(forced, after 1.60 0.66 0.80 0.80 0.71 1.06
final cut)

orthogonality properties of the mode shapes to compare either two modes from the same test or
two modes from different tests. If the modes are identical, a scalar value of one is calculated by the
MAC. If the modes are orthogonal and dissimilar, a value of zero is calculated. The MAC that
compares mode i and j has the form

2

> (63), (00

k=1

el [Sener|

k=1 k=1

MAC(, j) = | (D

where (¢)x is an element of the mode-shape vector and the asterisk denotes complex conjugate.
The value of the MAC does not actually quantify the correlation between modes. Ewins points out
that, in practice, correlated modes will yield a value greater than 0.9, and uncorrelated modes will
yield a value less than 0.05. The MAC is not affected by a scalar multiple.

Table III shows the MAC values that are calculated when mode shapes from tests t17tr, t18tr,
t19tr, and t22tr are compared to the modes calculated from the undamaged forced vibration test,
t16tr. The MAC values show no change in the mode shapes for the first three stages of damage.
When the final level of damage is introduced, significant drops in the MAC values for modes 1 and
2 are noticed. These two modes are shown in Figs. 23 and 24 and can be compared to similar
modes identified for the undamaged bridge in Figs. 11 and 12. When the modes have a node near
the damage location (Modes 3 and 5), no significant reduction in the MAC values are observed,
even for the final stage of damage, and a plot of this mode shape from test t22tr, Fig. 25, shows
no change from the corresponding undamaged mode, Fig. 13. Examination of mode shapes from
tests t17tr, t18tr, and t19tr reveal no change from the undamaged mode shapes shown in Figs. 11
through 16, as would be indicated from the MAC values shown in Table III.
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TABLE 111

Modal Assurance Criteria: Undamaged and Damaged Forced Vibration Tests (Coarse Set of

Accelerometers)
Modal Assurance Criteria tiétr X t17tr
Mode 1 2 3 4
1 6 | 0.006 0.000 0.003
2
3 0.000 .000
4 0.004 0.003
5 0.001 0.008
6 0.001 0.006
Modal Assurance Criteria t16tr X t18tr
Mode 1 2 5
1 09 0.004 0.001
2 0.000 96 0.002
3 0.000 .000 0.004
4 0.003 0.006 0.032
5 0.001 0.006 099
6 0.002 0.004 0.005
Modal Assurance Criteria t16tr X t19tr
Mode 1 2 3 4 5
1 . 0997 | 0.002 0.000 0.005 0.001
2 0000 | 0996 | 0.001 0.003 0.002
3 0.000 0.000 | 0.9¢ 0.006
4 0.003 0.005 0.004 981 0.032
5 0.001 0.006 0.004 0064 | 0995
6 0.002 0.002 0.000 0.004 | 0.009
Modal Assurance Criteria tl16tr X t22tr
Mode
1
2
3
y)
5
6

Data from the refined set of accelerometers, similar to that acquired during the undamaged forced
vibration tests, were again acquired after each level of damage had been introduced into the plate
girder. The resonant frequencies and complex mode shape data corresponding to the different
levels of damage obtained with this set of accelerometers are summarized in Appendix A, Tables
A-2 through A-5.
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Fig. 25. The second flexural mode measured after the final damage stage, test t22tr.
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These test results show that changes in resonant frequencies or mode shapes are not sensitive
enough to be a reliable indicator of damage in a bridge structure. It was only after the final level of
damage that significant changes in these modal parameters could be observed. From a practical
standpoint this would be considered too late for a reliable damage indicator. Even after the final
level of damage, modes that have a node close to damage location show almost no change from
their corresponding undamaged mode. These results motivate the need for more robust damage
indication algorithms.

IIl. C. Numerically Generated I-40 Bridge Data

Using benchmarked finite element models, forced vibration tests similar to the ones conducted on
the 1-40 Bridge were simulated numerically. All dynamic analysis calculations were performed
with the ABAQUS standard finite element code (ABAQUS/Standard User's Manual (1994)) on a
CRAY Y-MP computer. Results of the analyses were post-processed using ABAQUS Post
(ABAQUS/Post Manual (1994)), also on the CRAY. Mesh generation was done with PATRAN
(P3/PATRAN User Manual (1992)) on a Silicon Graphics workstation. Results from these
analyses (node point accelerations) were then analyzed using similar signal processing techniques
as those applied to the refined set of accelerometer data. Signal processing tasks were performed
using MATLAB standard (MATLAB User's Guide and Reference Guide (1992)) and the signal
processing toolbox (MATLAB Signal Processing Toolbox (1992)).

III. C. 1. Finite Element Modeling of the I-40 Bridge

The finite element model of the bridge superstructure included a total of 1235 nodes and 548
elements (see Fig. 26). With this mesh configuration the bridge model had 7032 degrees of
freedom. Eight-node shell elements were chosen to model the web of the two girders and the
bridge deck. Three-node beam elements were used to model the girder flanges, the floor beams,
and the stringers. Detailing of the bridge model at the abutment end is also shown on Fig. 26.
Horizontal and vertical stiffeners on the plate girder, the diagonal bracing, and the concrete
reinforcement were not included in this model. Previous studies (Farrar, et al. 1996) where the
individual stiffeners were modeled (35,160 DOF model) showed no significant variation in the
global dynamic properties from the model used in this study. Table IV compares the resonant
frequencies and modal mass of the two models. '

Generic material properties for steel were specified as

Egteel = 29,000,000 psi,
Vstee] = 0.3, and
Wsteel =0.284 Ibm / in3.

Generic concrete properties were specified as

Econcrete = 57000 \/g = 3,600,000 psi where f¢' = 4000 psi,

Veoncrete = 0.2, and
uconcrete =145 bm/ ft3

For both the shell and beam elements, all six degrees of freedom are active which allows a
complete three-dimensional representation of the bridge. Boundary conditions are enforced at the
support locations shown on Fig. 26 where the bridge is supported by the concrete piers. Note that
when defining the boundary conditions, no attempt was made to model the piers. Instead, at all
support locations, translation in the three global directions X, Y, and Z is constrained. Although
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Location of random
input force simulating

shaker

29

Girder Web

Fig. 26. Finite element discretization of the three-span unit of the I-40 Bridge, neglecting the piers.



TABLE IV
Comparison of Dynamic Properties Identified by the 7,032 DOF Model with the Dynamic
Properties Identified by the 35,160 DOF Model
35,160 DOF Model 7,032 DOF Model
Frequency (Hz) Generalized Frequency (Hz) Generalized
- Mode Mass Mass
1 2.82 1828 2.81 1784
2 3.77 1277 3.78 1225
3 3.81 988.2 3.79 963.7
4 3.88 584.4 3.87 562.0
5 5.11 1578 5.09 1484
6 5.23 1551 5.20 1473
7 5.48 756.4 5.39 738.6

the piers must be modeled to accurately simulate the dynamic response of the I-40 Bridge, for the
purpose of comparing different damage identification methods, they can be neglected, thus
reducing the required computational time. To further simulate the actual support at the base of the
plate girders above the piers, the out-of-plane rotations (about the Y and Z axes shown in Fig. 26)
are also constrained at these locations.

For the I-40 Bridge tests, a 2000 1b peak amplitude random excitation was applied by the Sandia
shaker. Using an "in-house" FORTRAN program, a random signal was generated to simulate the
input force applied by the Sandia shaker during the actual experimental modal testing of the 1-40
Bridge. The signal was specified so that it would have a uniform power spectral density (PSD) in
the range of 2 to 12 Hz and a peak amplitude of 2000 Ib. The random signal defined by 1024 data
points at 0.025-s increments. Plots of the generated random signal along with its PSD are
provided in Figs. 27 and 28, respectively.

As shown in Figs. 27 and 28, the duration of load is 25.6 seconds. The Nyquist frequency for the
signal is 20 Hz. This generated random force is applied to the model as a time-varying
concentrated vertical load at a nodal point that approximates the position of the Sandia shaker
during the forced vibration tests. The random force was applied on the concrete deck directly
above the south girder at the midpoint of the east span as shown in Fig. 26.
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Fig. 27. Generated random signal representing the input force applied by the Sandia shaker.
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Fig. 28. Power spectral density of the random input force in the frequency range of 0 to 20 Hz.

The discretization used in the finite element model did not have node points corresponding to the
actual 11 measurement locations associated with the refined set of accelerometers (Fig. 9).
Instead, nine equally spaced nodal points were monitored to simulate the accelerometer locations.
Figure 29 shows an enlarged view of the bridge central span highlighting these locations. The
accelerometers are spaced longitudinally at equal distances of approximately 20 feet, which,
incidentally, are locations where the floor beams frame into the main girder. In the vertical
direction, the monitored nodes are located approximately one-third the girder height above the
bottom flange.

III. C. 2. Simulation of Damage to the 1-40 Bridge

As shown in Fig. 30, three levels of damage similar to the final three girder cuts imposed during
the I-40 Bridge tests were simulated by creating additional nodes at the vicinity of the crack and
redefining the finite element discretization of the plate girder web and bottom flange in this region.

The second level of damage was simulated by disconnecting the shell elements representing the
lower one-third of the web and allowing the bottom flange to remain connected using a new beam
element. For the third phase of damage, the new beam element directly below the termination of
the web cut is altered to one-half its original cross-sectional area. Finally, the new bottom flange
element connecting the two damaged portions of the girder is removed to simulate the final damage
condition. This method of modeling the damage changes the geometry only, and does not
introduce nonlinearities into the model. Therefore, a linear modal analysis can be performed to
ascertain the effects of this damage on the dynamic properties of the structure. A summary of the
simulated damage conditions at the bridge midspan is provided in Table V.

As a supplement to the damage simulation at the girder midspan, other damage scenarios were
modeled to evaluate the dynamic response of the bridge with damage at different locations. These
analyses along with those conducted with damage at midspan would provide a data base of results
for the damage detection routines. Five damage scenarios were modeled at different locations on
the north girder in the central span.

1. One main girder cut simulating the final level of damage positioned halfway between midspan
and the east interior support.

2. One main girder cut simulating the final level of damage positioned one floor-beam-panel away
from the east interior support.
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Fig. 30. Finite element modeling of the main girder (a) before damage and (b) after damage.

3. Two main girder cuts, each simulating the final level of damage, positioned two floor-beam-
panels away from the east interior support and three floor-beam-panels away from the west

interior support.

4. One main girder cut simulating the second level of damage positioned halfway between
midspan and the east interior support.
5. One main girder cut simulating the second level of damage positioned one floor-beam-panel
away from the east interior support.

Damage cases A-4 through A-8 correspond to the damage scenarios 1 through 5, respectively,
listed above. A summary of the additional damage cases is provided in Table VL

The final case (A-9) did not involve altering the finite element model. Instead, the original forcing
function is replaced with a different time-history that had the same peak amplitude and the same
frequency content. Plots of the force time history and the PSD of the alternate random force,
respectively, are given in Figs. 31 and 32.

Note that although the force time histories differ between the alternate and original random force,
their frequency contents remain similar. This case was included in the investigation to test that the
damage identification routines do not identify damage when two different undamaged responses
are analyzed, that is, give a "false-positive" reading.

TABLE V
Summary of Damage Cases A-1 through A-3
Damage Case Location of Damage Damage Description
lower one-third portion of web
A-1 midspan cut
lower one-third portion of web
A-2 midspan plus half of bottom flange cut
lower one-third portion of web
A-3 midspan plus entire bottom flange cut
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TABLE VI

Summary of Damage Cases A-4 through A-8

Location of Damage
Damage Case on Damaged Span Damage Description
A-4 one location: halfway between | lower one-third portion of web
midspan and east support plus entire bottom flange cut
A-5 one location: one floor-beam- | lower one-third portion of web
panel away from east support | plus entire bottom flange cut
A-6 two locations: halfway lower one-third portion of web
between midspan and east plus entire bottom flange cut
support; one floor-beam-panel
west of midspan
A-7 one location: halfway between | lower one-third portion of web
midspan and east support cut
A-8 one location: one floor-beam- | lower one-third portion of web
panel away from east support | cut
g | i i
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Fig. 31. Generated random signal representing the alternate input force.
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Fig. 32. Power spectral density of the alternate input force in the frequency range of 0 to 20 Hz.
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III. C. 3. Eigenvalue and Forced Vibration Analyses

Before conducting the forced vibration dynamic analyses of the 1-40 Bridge, eigenvalue analyses
were performed to identify the resonant frequencies of the three modes of the bridge. An analysis
was first conducted with the bridge in an undamaged condition and then repeated for each state of
damage (cases A-1 through A-8) to determine the changes, if any, in the resonant frequencies that
resulted from the damage.

Figure 33 shows the first bending, first torsion, and second bending modes identified from the
eigenvalue analysis of the undamaged bridge. The same three modes identified for damage case A-
3 are shown in Fig. 34. When this level of damage is introduced, there is a decrease in the
resonant frequency of the first mode (approximately 4.2%) along with a 0.78% reduction for the
second mode frequency. No changes were detected in the third mode frequency after damage case
A-3 was introduced. This response was expected because one of the nodes for the third mode
coincided with the damage location. Table VII summarizes the changes in resonant frequencies for
the first three modes that resulted from the various damage scenarios.

The mode shapes and resonant frequencies of the bridge for damage cases A-4 through A-6 are
shown in Figs. 35 through 37. No significant changes were observed for damage scenario A-4.
The bridge behavior for the A-5 and A-6 damage conditions followed a similar trend to that shown
when the damage was located at midspan (case A-3). For the first mode, the resonant frequency
decreased by 4.2% and 2.6% for damage scenarios A-5 and A-6, respectively. No significant
changes in the frequencies were detected for the first torsional and second bending modes.

Using the random force input shown in Fig. 27, a dynamic time history analysis was conducted
using modal superposition and the responses (i.e., vertical acceleration-time histories) at the nine
monitored nodal points are recorded. A typical response at locations N-1 and N-5, identified in
Fig. 29, are shown in Figs. 38 and 39, respectively.

TABLE VII
Resonant Frequencies Calculated by Finite Element Analyses of the Various Damage Scenarios
First Bending Mode | First Torsional Mode | Second Bending Mode
Damage Case Freq. (Hz)! Freq. (Hz)! Freq. (Hz)!

Undamaged 3.79 3.87 5.09

A-1 3.79 3.87 5.09
(0.0%) (0.0%) (0.0%)

A2 3.79 3.87 5.09
(0.0%) (0.0%) (0.0%)

A-3 3.63 3.84 5.09
(4.2%) ~ (0.8%) (0.0%)

A4 3.79 3.87 5.07
(0.0%) (0.0%) (0.4%)

A-5 3.63 3.85 5.07
(4.2%) (0.5%) (0.4%)

A-6 3.69 3.85 5.07
(2.6%) (0.5%) (0.4%)

A-7 3.79 3.87 5.09
(0.0%) (0.0%) (0.0%)

A-8 3.79 3.87 5.09
(0.0%) (0.0%) ' (0.0%)

'Values in parentheses are the percent change from the undamaged case
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Fig. 33. Modes and resonant frequencies identified from eigenvalue analysis of the

undamaged bridge:
bending mode.
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Fig. 34. Modes and resonant frequencies identified from eigenvalue analysis of the

damaged bridge, case A

bending mode.
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Fig. 35. Modes and resonant frequencies identified from eigenvalue analysis of the
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bending mode.
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Fig. 38. Typical acceleration time history response at location N-1 for the undamaged bridge.
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Fig. 39. Typical acceleration time history response at location N-5 for the undamaged bridge.

The modal superposition method provides an efficient way for conducting a time history dynamic
analysis with ABAQUS. When implementing this technique it is assumed that the structure is
linear and that a sufficient number of modes have been extracted to accurately model the structure's
dynamic response. The first ten modes were used in this analysis.

A forced vibration dynamic analysis was initially done with the bridge in its undamaged state and
then repeated for each damaged case A-1 through A-8 and the second undamaged case, case A-9.
Results from these analyses (i.e., monitored acceleration responses) were then imported to
MATLAB for further investigation as discussed in the next section.

III. C. 4. Meodal Data from Finite Element Models

Following the eigenvalue and forced vibration dynamic analyses, a spectral analysis was conducted
using the nine measured responses shown in Fig. 29. MATLAB performs spectral analysis on
time series employing the Welch method of power spectrum estimation. Given two arbitrary 1024
point sequences, MATLAB first divides each sequence into N segments of n samples each, where
n must be a power of 2. Two segments of 512 samples were considered sufficient for obtaining
accurate results. After the sequence is divided, a Hanning window is applied to each 512-point
data segment and the segment is transformed into the frequency domain with a 512-point fast-
Fourier transform. The results are then averaged and used to compute individual PSDs and the
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cross-power spectral densities (CPSD) between the two series. Processing the calculated response
time histories in this manner simulates the signal processing approach that would be employed to
compute modal properties from ambient vibration data.

Sampling parameters were specified that calculated the CPSD from 25.6-s time windows
discretized with 1024 samples. With a resolution of 0.0391 Hz, the CPSD was calculated for a
frequency range of 0 - 20 Hz. Complex mode shapes are determined from the magnitude and
phase of the CPS between the nine channels, N-1 through N-9, relative to the reference response
N-3 (see Fig. 29). The amplitude of a mode shape is determined from the magnitude of the CPSD
at the mode's associated resonant frequency. Note that the modal amplitude for a particular mode
at the reference location N-3 is obtained from its PSD. Because no damping was specified in these
analyses, phase angles at resonance are either 0 or 180 degrees and the phase information has been
incorporated by specifying each amplitude as either a positive or negative value. Figure 40 shows
a typical CPSD between channel N-5 relative to channel N-3. The PSD at channel N-3 for the
undamaged structure is given in Fig. 41.

The resonant frequencies and mode shape data obtained from the set of monitored responses for
the first bending, first torsion, and second bending modes of the undamaged bridge are tabulated in
Appendix B. Modal data corresponding to damage cases A-1 through A-9 are also tabulated in the
Appendix B.

Before analyzing the modal data with the various damage identification routines, the mode shape
data corresponding to the refined set of accelerometers (either experimental or analytical), which
are summarized in Appendices A and B, were first normalized assuming an identity mass matrix.
There are several approaches in which to normalize the mode shape data. For this problem, the
approach taken was to normalize the modal amplitudes to satisfy the condition

{¢n}T[m]{¢_n} = 1, @

where {0, } = the normalized modal vectors, and
[m] = the mass matrix = diag (1).

Letting y, represent the original modal amplitudes gathered experimentally or analytically, the
normalized magnitudes are computed using the equation
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Fig. 40. Cross power spectral density between channels N-5 and N-3 with the bridge undamaged.
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Fig. 41. Power spectral density at reference channel N-3 with the bridge in its undamaged state.
[oa} = —={va}, ©
MI’l

p
where M, = > yim;. @)
i=1

In the latter equation, p = the number of measured points, n = the mode shape number.

IV. DESCRIPTION OF DAMAGE IDENTIFICATION METHODS

In this section the damage identification methods that were compared are described. In the form
reported herein these methods provide a Level two assessment of damage, that is, they identify that
the structures are damaged and they estimate the location of damage. A more detailed description
of these damage identification methods can be found in the cited references for each method.

IV. A. Damage Index Method

This section presents the damage identification method developed by Stubbs and Kim that locates
damage in structures given their characteristic mode shapes measured before and after damage.
One of the benefits of this technique is that only a few modes are required to obtain reliable results.
From a practical point of view, this is important because during a field test the number of measured
modes is limited. Limitations found in the Stubbs' Sensitivity Method and the Modified Cawley's
Method (Kim and Stubbs, 1993) led to the development of this technique.

Consider a linearly elastic beam structure composed of NE elements and N nodes along its length.
Letting y.(x) and EI(x) represent the ith mode shape vector and the beam's bending stiffness,
respectiveiy, the ith modal stiffness, K, of the beam is formulated as ,

L BPNNY)
K = [ EIGOv:"(0Fdx, ©)
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where L represents the total length of the beam (Stubbs, et al., 1995). The jth member
contribution of the ith modal stiffness, Kj;, is given by

b
Ky = B[ Tv" (0 ds, ©®)

where EI, is the jth member stiffness and [a,b] represent the limits of member j. This formulation
assumes that El is constant over the interval [a,b].

For the ith mode, the fraction of modal stiffness in the jth member, which is equivalent to the

modal strain energy contained in the jth member divided by the modal strain energy contained in
the entire beam, is given by :

Fyj = K;/K;. (7

For the damaged structure, the ith-mode modal strain energy fraction concentrated in the jth
member for the damaged structure is given by

Fj = Ki/Ki = FIJ(1+2AU o; +H.O.T.), (8)
=1
where
* L * * 2
K = [ B Golvi(oPx, | ®
and
* * (b *y, 2
Kj = B | [v{"ofdx, (10)

and the asterisks denote quantities associated with the damage structure. Again, Eq. 10 assumes
that EI is constant in the damaged structure over the range [a,b].

In Eq. 8, the terms A;; represent the sensitivity of the ratio F i/Fij to the fractional decrease in
flexural rigidity, oj. The decrease in flexural r1g1d1ty for element J is given as
o = (EI —EIL;)/ EI; . H.O.T. represent higher order terms. For a given mode i, the terms Fj;

and F have the followmg properties !

NE
S By = ) Fj = 1, and Fy <<1, Fjj <<1, 11

which can be used to formulate an approximate relationship between the pre- and post-damage
behavior of the structure. The criteria that F; << 1 and F << 1 are based on the assumption that
the beam has been discretized into a sufficient number of srnall elements relative to the total length
of the beam. A key assumption is now made that for the ith mode, the fractional strain energy in
the jth element is approximately the same before and after damage, yielding the following relation
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Now, substituting Eqs. 7 and 8 into Eq. 12 gives
o b &y/KD (13)

CF;  (Ky/Kp)'

Replacing the stiffness terms of Eq. 13 with Egs. 5, 6, 9 and 10, and assuming the EI is constant
over the entire length of the beam for both the damaged and undamaged beam yields

« b *" 2 * L *" 2
i Ua vi" GoPdx /EL [ Tyl 0] dx)

El 5 T . (14)
j ( [ wireore Exf [W(x)]zdx)

Implicit in the assumption that EI is constant over the length of beam, both before and after
damage, is another assumption that damage will be located in a small number of elements, and will
therefore not significantly affect the average value of EI over the entire beam. With the
approximation EI = EI" over the entire length of the beam, Eq. 14 becomes

BI, ( [ wircorax /v "(x)]zdx)
® b L .
= ( [wircorax /[ v, "(x)}"‘dx)

(15)

To avoid potential numerical problems resulting from division by very small numbers, the damage
index, B;;, which for mode i is related to the change in the modal strain energy stored in member Js
is defined as

* L
([rvicorax /[ tvioorex)+1
Bij = b 2 L 5 .
(ja [y;"(x)]"dx / Io [y;"(x)] dx)+1

(16)

In order to account for all n measured modes, the following formulation of the damage index
equation is required

B; = O ) / Ot a7
i=1 i=1

where

b L L
fy = ( [t oorax + [y, "(x)]zdx) /jo v, "ol dx, (18)

and an analogous term f E can be defined using the damaged mode shapes.
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Assuming that the collection of the damage indices, B, represents a sample population of a
normally distributed random variable, a normalized damage localization indicator is obtained as
follows

z; = 2—, (19)

where B_, and oj represent the mean and standard deviation of the damage indices, respectively.

A statistical decision making procedure is employed to determine if the normalized damage index,
Z;, is associated with a damage location. Values two standard deviations from the mean are
assumed to be associated with damage locations.

IV. B. Mode Shape Curvature Method

Damage in a structure is typically associated with a stiffness reduction (located at the vicinity of
damage) and increased structural damping. These characteristics of damage, in turn, alter the
vibrational characteristics of the structure such as resonant frequencies and mode shapes. A
considerable amount of effort has been put into using changes in resonant frequencies and mode
shapes for detecting and locating damage. In this section, the use of mode shape curvatures for
identifying and locating damage in a structure is summarized. In formulating the eigenvalue
problem, Pandey, Biswas, and Samman (1991) assume that structural damage only affects the
stiffness matrix and not the mass matrix. For the undamaged condition the eigenvalue problem is
given as

(K] = M[MI){x;} = {0}, (20)

where [K] = the stiffness matrix,

A; = the ith eigenvalue,
[M] = the mass matrix, and
{x,} = the ith displacement eigenvector.

Similarly, the eigenvalue problem for the damaged condition is

(" - XM} = {o}, @1)

where the asterisks signify the stiffness matrix, the ith eigenvalue, and the ith eigenvector of the
damaged structure. The pre- and post-damage eigenvectors are the basis for damage detection.
Mode shapes curvature for the beam in undamaged and damaged condition can then be estimated
numerically from the displacement mode shapes with a central difference approximation or by
differentiating a function fit to the data.

Given the undamaged and damaged mode shapes, consider a beam cross section at location x
subjected to a bending moment M(x). The curvature at location x, v"(x), is given by

v'(x) = M(x)/ (EI), (22)
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where E = the modulus of elasticity and
I = the moment of inertia of the section.

From this equation, it is evident that the curvature is directly proportional to the inverse of the
flexural stiffness, EI. Thus, for a given moment applied to the damaged and undamaged structure,
a reduction of stiffness associated with a damage incident will, in turn, lead to an increase in
curvature. Furthermore, an estimation of the extent of damage at a cracked section can be obtained
by measuring the amount of change in the mode shape curvatures. The larger the reduction in the
flexural stiffness (i.e., higher level of damage), the larger the change in the mode shape curvatures
from an undamaged to damaged condition. Differences in the pre- and post-damage mode shapes
curvatures are shown to be located in the cracked region.

This method can be used with mode shapes that have been normalized arbitrarily, but consistently.
Pandey, et al., do not present a means to quantify when changes in curvature are indicative of
damage, hence, some engineering judgment is required when examining plots of the change of
curvature as a function of position. For multiple modes, the absolute values of change in curvature
associated with each mode can be summed to yield a damage parameter for a particular location.

IV. C. Change in Flexibility Method

As an alternative to using changes in the modal parameters of a structure (i.e., resonant
frequencies, mode shapes, and modal damping values) for detecting damage, researchers at Duke
University (Pandey and Biswas, 1994) have proposed a method which takes into account the
flexibility of the structure before and after damage has occurred. The method does not require an
analytical model of the structure. Resonant frequencies and mode shapes for only a few of the
lower modes of vibration are needed.

For the undamaged structure, the flexibility matrix, [F], is derived from the modal data as follows

! - 1
[F] = [elel'[e]" = ¥ —{o}Hal", 23)
i=1%i
where {¢; } = the ith mass-normalized mode shape,

[@] = the mode shape matrix = [, §,, ... , 0,],
®; = the ith modal frequency,

[€2] = the modal stiffness matrix = diag (miz), and
n = the number of measured or calculated modes.

The approximation in Eq. 23 comes from the fact that typically the number of modes identified is
less than the number of degrees of freedom needed to accurately represent the motion of the
structure.

Similarly, for the damaged structure

[F] = o] [o] - 122“1@{¢T}{¢?}T, 24)
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where the asterisks signify properties of the damaged structure. From the pre- and post-damage
flexibility matrices, a measure of the flexibility change caused by the damage can be obtamed from
the difference of the respective matrices, i.e.,

[AF] = [F]-[F"], (25)

where AF represents the change in flexibility matrix. Now, for each column of matrix AF let 6 be
the absolute maximum value of the elements in the jth column. Hence,

Sj = maxlf)lj' L...n, (26)

where 8;; are elements of matrix AF and is taken to be a measure of the flexibility change at each
measurement location. The column of the ﬂex1b111ty matrix corresponding to the largest 8 is
indicative of the degree of freedom where damage is located. Interpolation between measured
mode amplitudes can be used to generate additional degrees of freedom. Again, Pandey and
Biswas do not present a means to quantify which values of 8. are indicative of damage. Also, the
need for unit mass normalized modes presents a problem when this method is applied to modes
obtained from ambient data.

IV. D. Change in Uniform Flexibility Shape Curvature Method

By combining certain aspects of the Mode Shape Curvature Method and the Change in Flexibility
Method, Zhang and Aktan (1995) developed an alternative damage detection scheme. Similarly to
the Mode Shape Curvature Method, the basic concept is that a localized loss of stiffness will
produce a curvature increase at the same location. However, the change in curvature is obtained
from the uniform flexibility shape instead of the mode shapes.

Recall that the flexibility matrices, before and after damage, can be approximated by the modal
parameters:

[F]=[F}, Fy, ... Fy1=[@]Q] [o] @7
and

[F]= . B, .. o1 =[] [e] (28)

where the asterisks designate the damaged structure. The quantities F,; through F, (with and

without the asterisk) correspond to columns of the flexibility matrix. The coefficients of the ith
column represent the deflected shape assumed by the structure with a unit load applied at the ith
degree of freedom. For example, the third column of the flexibility matrix would correspond to the
structure's deflection profile when a unit load is applied at degree of freedom three.

Zhang and Aktan use the change in curvature of the uniform load flexibility to determine the
location of damage. The uniform load flexibility represents the deflected shape assumed by the
structure when all degrees of freedom are loaded with a unit load. Thus, the uniform load
flexibility corresponds to the sum of the unit load flexibilities. In terms of the unit load
flexibilities, the curvature change is evaluated as follows

48



(A} =

, (29)

where {A} and n represent the absolute curvature change and the number of degrees of freedom,
respectively. Curvature associated with each unit load flexibility can be obtained by applying a
central difference operator to measured modal amplitudes, or as was done in the study reported
herein, a polynomial can be fit to the modal amplitudes and then subsequently differentiated to
obtain the curvature values. Interpolation procedures can again be used to generate additional
degrees of freedom at locations between sensors. This method requires mass-normalized mode
shapes. Zhang and Aktan do not present a method to quantify when a change in the curvature of
the uniform flexibility surface corresponds to damage.

In this study, a minor adjustment was made in the sequence in which the absolute value and
summation tasks were performed, that is,

@y = Y - {5 (30)

i=1

Note that the absolute change in curvature is first evaluated for each unit load flexibility shape and
then accumulated.

IV. E. Change in Stiffness Method

Investigation of the eigenvalue problem of a structure before and after the onset of damage has
been used to develop a method for detecting damage (Zimmerman and Kaouk, 1994) . The
eigenvalue problem of an undamaged, undamped structure is given as

—{QIM] + [K]@] = [0], 3D

where [M] = the mass matrix of the undamaged structure,
[K] = the stiffness matrix of the undamaged structure,
[®] = the mode shape matrix of the pre-damaged structure = [¢;, ¢y, ... , ¢, ],
¢, = the ith pre-damaged mode shape,
[Q] = the modal stiffness matrix of the damaged structure = diag (®?), and
oy = the ith pre-damaged modal frequency.

The eigenvalue problem of the damaged structure is formulated by (1) replacing the pre-damaged
eigenvectors and eigenvalues with a set of post-damaged modal parameters and (2) subtracting the
perturbations in the mass and stiffness matrices from the original matrices. Letting [AM4] and
[AK,] represent the perturbations to the original mass and stiffness matrices, the eigenvalue
equation expands to

[He M- [amy)) + ((KI-[ak,])[@"] = [o], (32)

where the asterisk denotes modal quantities associated with the damaged structure.



Two forms of a damage vector {D} are then obtained by separating the terms containing the
original matrices from those containing the perturbation matrices, hence,

i} = [oi" ] + [Kfor} = [-o0iTam) + [ak]]for}. (33

To simplify the investigation, damage is usually considered to affect only the stiffness of a
structure because substantial damage must occur to disrupt the mass. Therefore, assuming that the
effect of damage on the mass matrix is negligible, the damage vector reduces to

{D;} = [akHo;}. | (34)

The stiffness matrices of the structure, before and after damage, can be approximated from the
modal parameters by

K]~ [@[ee = 3 (oo Ho,)" . and 35)

i=1

[]= [0 e To T = 3o oo} a6

1=

The approximation is the result of typically only having a limited number of modes available with
which to form the stiffness matrix. The pre- and post-damage stiffness matrices are subtracted, the
difference is multiplied by the damaged mode shape vector to obtain the damage vector.

Interpolation between measured mode amplitudes can be used to generate additional degrees of
freedom. Again, Zimmerman and Kaouk do not present a means to quantify which values of the
damage vector are indicative of damage. Also, the need for mass-normalized modes presents a
problem when this method is applied to modes obtained from ambient data.

Stiff regions of the structure can cause problems in locating damage because noise in the
measurements can cause a stiffness variation larger than one caused by damage in a less stiff area
(Simmermacher, et. al. 1995). Because of this concern, some form of scaling is required in order
to minimize the effect of noise at highly stiff regions. In this study, the scaling used is defined as

{Dg} = [Wl{D;}, 37)
where
1 1 1 1
[W] = diag| %, 757 T30 +oe , and (33)
2 I
a8
ZZ
[Z] = | 2® | = [AK]. , (39)
Zn
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A normalized, scaled damage matrix, [Ds], is then formed from the normalized, scaled damage
vectors such that [Dg] = [Dyy, Dgy, Ds3,...Dsp]. Simmermacher states that the first left singular
vector resulting from a singular value decomposition of the normalized damage matrix (Eq. 37)
contains the most relevant information regarding damage. Regions adjacent to the interior supports
of the bridge represent areas of large stiffness. Thus, the scaling was performed so that damage
would not be falsely detected at the pier locations.

V. APPLICATION OF DAMAGE IDENTIFICATION METHODS TO
EXPERIMENTAL AND NUMERICAL DATA

In this section, the linear damage identification methods are exercised using experimental and
numerical modal data for the I-40 Bridge. As discussed earlier, the data used for the damage
diagnosis consist of resonant frequencies and mode shapes corresponding to bending and torsional
modes of the bridge. Lateral response data were not obtained experimentally, and, hence, were not
extracted from the analytical data. The three sets of modal data used to test the damage
identification routines are as follows:

(1) SET1 - experimental modal data obtained via CPS from refined sensor measurements (see Fig.

(2) SET2 - experimental modal data obtained via global polynomial curve fit of coarse sensor
measurements (see Fig. 8). Note the mode shape vectors from this set of data are mass
normalized.

(3) SET3 - numerical modal data obtained via CPSD from refined sensor measurements (see Fig.
29)

The SET1 data is tabulated in the first five tables of Appendix A. Table A-1 represents the
undamaged modal data whereas Tables A-2 through A-5 contain modal data for the four damage
conditions, cases E-1 through E-4, respectively. The latter five tables, A-6 through A-10,
summarize the SET2 modal data. Table A-6 corresponds to the undamaged modal data and Tables
A-7 through A-10 are associated with damage cases E-1 through E-4, respectively. The
numerically generated set of modal data (SET3) is tabulated in Tables B-1 through B-10 of
Appendix B. Table B-1 contains the undamaged modal data, Tables B-2 through B-9 contain the
damaged modal data for damage cases A-1 through A-8, and Table B-10 contains the modal data
for the alternate undamaged case A-9.

Two of the damage detection methods require only normalized mode shapes, namely the Damage
Index Method and the Mode Shape Curvature Method. The Change in Flexibility Method, the
Change in Uniform Flexibility Shape Curvature Method, and the Change in Stiffness Method
require the resonant frequency for each mode and mass-normalized mode shape vectors.

In accordance with Stubbs, et al. (1995), an Euler-Bernoulli beam was selected to model the north
damaged girder of the I-40 Bridge for two reasons: (1) the fundamental behavior of a bridge
resembles that of a composite (concrete and steel) beam and (2) only vertical accelerations were
measured which can be simulated with a one-dimensional beam. Because of the contrast in the
layout scheme between the coarse and refined set of accelerometers, it was necessary to create two
damage detection models (DDM); one representing the entire north girder and one representing
only the damaged span of the north girder. Figure 42 shows the coarse set of accelerometer
locations with respect to the DDM of the entire north girder. The DDM of the full length girder
was a 420-ft beam discretized with 210 two-foot elements and 211 equally spaced nodes.
Discontinuities in the flange dimensions occur at elements 62, 80, 140 and 158 in this DDM.
Splice plates, which also cause local stiffness discontinuities, are located at elements 47, 89, 122,
and 163. Plots (a) and (b) of Fig. 43 show the positions of the refined set of accelerometers
corresponding to the experimental setup and the numerical model, respectively . Figure 43(c)
shows the DDM of the 160-ft damaged span modeled with 160 one-foot elements and 161 nodes.
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Fig. 43. (a) Refined set of accelerometer locations in experimental setup, (b) refined set of
accelerometer locations in numerical setup, and (c) damage detection model of damaged
span.

For this DDM discontinuities associated with the change in flange dimension occur at elements 20
and 140. Discontinuities associated with the splice plates occur at elements 46 and 113. Note that
the splice plates were not modeled in the FEM.

Although the damage models can be refined by varying the element length, the selected element
size was considered sufficient for determining the damage location. If damage can be located to
within one or two feet of its actual location, a Level II damage diagnosis was considered
successful. Note that the damage detection models were created simply to partition the north girder
in order to monitor damage at discrete locations and should not be confused with nodes and
elements in the finite element sense.

With respect to the DDM, the magnitudes of the mode shapes are known only at a few nodal
locations. For example, the locations of the refined set of accelerometers in the experimental layout
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(see Fig. 43(a)) correspond to nodes 1 through 161 in increments of 16 (i.e., 1, 17, 33, etc.) of
the DDM of the damaged span (see Fig. 43(c)). Determining the location of damage based solely
on the limited number of mode shape values would require that damage occur in the vicinity of one
of the sensors. In the event that damage should occur at a location between two neighboring
sensors no information is available in that region to locate the damage. Thus, in order to improve
the sophistication of the damage detection routines, the magnitudes of the mode shapes at
intermediate nodal locations of the damage detection models must first be estimated by some form
of interpolation. By interpolating between the known mode shape values, intermediate values are
generated making it possible to locate damage between adjacent sensors. Two forms of
interpolation were used in this study, a cubic spline interpolation scheme and a cubic polynomial
interpolation scheme.

A common characteristic that all damage detection methods strive for is that their associated
algorithms should produce unambiguous signs of damage at the location where damage occurred.
Thus, the nodes and elements of the damage detection models which are expected to be affected by
damage cases E-1 through E-4 and A-1 through A-8 are summarized in Table VIIL

V. A. Damage Index Method

Using the experimental modal data summarized in Tables A-1 through A-5 of Appendix A, the
damage index technique was shown to be able to locate and estimate the severity of damage in the
1-40 Bridge (Stubbs and Kim, 1994). The authors point out several important features of the
technique (Stubbs et al., 1995) which include: (1) the analysis calls for mode shapes only, (2) a
few low frequency modes are sufficient for detecting damage, (3) resonant frequencies and
damping information are not required, and (4) damage can be located in a structure consisting of
many elements. The basic idea is that the distribution of strain energy originally stored in the
structure will decrease in damaged areas. Once a structural member experiences a reduction of
stiffness it can no longer absorb the same amount of energy as it did when undamaged thus
causing a deviation from the original strain energy distribution of the undamaged structure. Thus,
changes in the strain energy distributions of the undamaged and damaged structures can first be
used to detect and locate damage.

TABLE VIII

Nodes and Elements of Damage Detection Models Corresponding to the Locations of Damage
for Cases E-1 through E-4 and A-1 through A-8

Damage Case Affected Nodes Affected Element(s)
of DDM of DDM

E-1 through E-4 * 82, 83 82
E-1 through E-4 ** 106, 107 106
A-1 through A-3 80, 81 80
A-4 40, 41 40

A-5 20, 21 20

A-6 F** 40,41 40
100,101 100

A-7 40, 41 40

A-8 20, 21 20

¥ SET1 modal data
% SET2 modal data
% Two locations of damage
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The distributions of strain energy in the structure, before and after damage, are calculated from the
associated mode shapes and subsequently used to compute the damage localization indicator (DLI).
Equation 17 is used to calculate the damage localization indicator. Stubbs et al. (1995) associate
damage locations with statistical outliers of the damage localization indicator. A normal
distribution is fit to the damage localization indicators and values more than two standard
deviations from the mean are assumed to correspond to damage locations.

Before investigations were conducted using the numerically generated modal data, a MATLAB
version of the Damage Index Method was first shown to be able to reproduce the results
documented in Stubbs and Kim (1994). This verification was done to gain familiarity with the
algorithms in order to apply them properly to the remaining sets of modal data.

V. A. 1. Damage Index Method Applied to Experimental Data

The resulting damage localization indicator for the four levels of actual damage, damage cases E-1
through E-4, determined using the SET1 modal data are plotted in Figs. 44 and 45. The DLI
values plotted in Fig. 44 were obtained using a cubic spline whereas the magnitudes presented in
Fig. 45 were determined using a cubic polynomial interpolation function. These figures are almost
identical to the ones given in the TAMU report (Stubbs and Kim, 1994). The figures indicate that
no damage exists other than at the damage locations summarized in Table IX. Included in this table
are the number and range of elements which exceeded the damage criteria for the four damage
cases.

According to Table IX, the number and range of elements affected by damage depends on how the
mode shapes are interpolated. For damage cases E-1 through E-3, the cubic spline interpolator
resulted in a larger amount of predicted damage locations. Furthermore, the range of elements
affected by damage differed between the two interpolation schemes. No discrepancy was
discovered in either the number or range of affected elements for damage case E-4.

Figure 46 shows the DLI for damage cases E-1 through E-4 computed by means of the SET2
modal data. The mode shapes were interpolated using only the cubic polynomial function. Note
that the elements span along the entire length of the north girder and that element 106 corresponds
to the location of damage. Two sets of DLI data are plotted; one plot includes the influence of all
six modes on the DLI and the other includes only the affect of the first bending and first torsional
modes. This comparison illustrates that modes not directly affected by damage may disrupt the
performance of the damage localization indicator. For damage cases E-1 through E-3, plots (a)
through (c) show that a better indication of the actual location of damage was achieved with only
two modes. By including the four higher frequency modes, erroneous indications of damage were
produced. For damage case E-4, there is essentially no difference between the DLI calculated
using six modes or two modes. Table X summarizes the predicted locations for damage cases E-1
through E-4 using the SET2 modal data.

TABLE IX
Summary of Predicted Damage Locations for Damage Cases E-1 through E-4
using SET1 Modal Data
Cubic Spline Interpolation Cubic Polynomial Interpolation

Damage # of Elements Range of # of Elements Range of

Case with DLI > 2.0 Elements with DLI > 2.0 Elements

E-1 10 75 -84 9 77 - 85

E-2 10 74 - 83 6 79 - 84

E-3 9 74 - 82 5 80 - 84

E-4 10 76 - 85 10 76 - 85

55




9¢

5: I I
s 4F
© o
O C
i) 3
£ C
S 2 ¢
B 15[
© C
Qo N
8§ Ok
8.’ C
0] -1_
£ N
a 21
-3_IIIllllllllllIllllllllll!llllll—
10 30 50 70 90 110 130 150
Element # -
()
5:1 T L T T
s 4
o C
L -
= 3
£ C
S 2 F
8 1E
® -
Q L
3 0 p=
8) N
© -1-
E -
A 21
.3 ! ! I | | | |

10

Fig. 44. Damage localization indicator for damage case (a) E-1, (b) E-2, (c) E-3, and (d) E-4 computed using the SET1 modal data and a
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TABLE X
Summary of Predicted Damage Locations for Damage Cases E-1 through E-4
using SET2 Modal Data
Six Modes Two Modes
Damage # of Elements Range of # of Elements Range of
Case with DLI > 2.0 Elements with DLI > 2.0 Elements
E-1 9 34 -38 8 103 - 109
141 157
156 - 158
E-2 12 31-40 9 101 - 109
104 - 105
E-3 4 35-38 10 101 - 110
E-4 9 101 - 109 10 101 - 110

Results summarized in Table X indicate that when damage is not severe, the damage locations
predicted with the DLI may be misleading when modes unaffected by damage are included in the
calculation. ‘

V. A. 2. Damage Index Method Applied to Numerical Data

Figure 47 shows the DLI values calculated for damage cases A-1 through A-3 using the SET3
modal data and a cubic spline interpolation scheme. No clear indication of the correct damage
location is apparent until case A-3 (i.e., 3 1/2 foot web plus total flange cut) was introduced. The
DLI for damage cases A-1 through A-3 is also plotted for the cubic polynomial interpolation, as
shown in Fig. 48. Contrary to the results produced from the cubic spline, there exist accurate
indications of damage for the two intermediate levels of damage, cases A-1 and A-2, in addition to
the final damage case A-3. At midspan, the criteria for damage was satisfied in the element range
of 79 through 81 for cases A-1 and A-2. For damage case A-3, the affected element range
expanded to 76 through 85. Thus, the typical smeared damage behavior does not occur until the
bottom flange is completely severed. However, for cases A-1 and A-2, when the cubic polynomial
interpolation scheme is used, there are incorrect indications of damage at element 20. This element
corresponds to locations where there is an abrupt change in the flange dimensions of the plate
~girder. Flange dimensions over the piers have been increased from 21 x 1.25 in. to 24 x 2.625 in.
to better resist the higher bending moments at these locations. This increased dimension produces
a 58.5% increase in the bending stiffness for the portions of the plate girders near the piers. A
similar change in flange dimension occurs at element 140, but there is no evidence of a false
indication of damage at this location.

A similar analysis was performed for the damage conditions of cases A-4 through A-8 and for the
alternate undamaged case, A-9. The results are shown in Figs. 49 through 50 and summarized in
Table XI. As shown in plots (a) of Figs. 49 and 50, both mode shape interpolation schemes were
able to locate the damage associated with case A-4. For damage case A-5, an accurate prediction
was made only when the mode shapes were interpolated with the cubic polynomial function (see
Fig. 50(b)). The DLI obtained via the spline interpolated mode shapes showed a false damage
location near the end of the span (see Fig. 49(b)) which was believed to be caused by inaccuracies
in the end conditions of the fit. From Figs. 49 and 50 (c), the DLI computed for damage case A-6
revealed two positive peaks at the two damaged locations, elements 40 and 100. However, the
damage criteria (IZl > 2) was satisfied only at one location: halfway between midspan and the
quarter point. Neither of the two interpolation methods were able to predict the damage location
for case A-7 (view plot (d) of Figs. 49 and 50) and the cubic polynomial interpolation scheme, in
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TABLE X1
Summary of Predicted Damage Locations for Damage Cases A-4 through A-8
using SET3 Modal Data
Cubic Spline Interpolation Cubic Interpolation
Damage # of Elements Range of # of Elements Range of
Case with DLI > 2.0 Elements with DLI > 2.0 Elements
A-4 8 37-44 9 36 - 44
A-5 10 2-11 6 20 -25
A-6 10 96 - 105 8 97 - 104
A-7 o | - 2 22,79
A-8 10 2-11 5 21-24,79

fact, gives two incorrect indications of damage at element 22 and element 79. Comparison of Fig.
49(e) and Fig. 50(e) reveals that only the cubic polynomial interpolation gave positive indications
of the damage location for case A-8, but this plot also shows a false indication of damage at
element 79. For case A-9, the damage criteria was not met for any location by either interpolation
scheme, although it is very close to being met near element 3 when the spline function is used and
element 20 when the polynomial function is used (see plot (f) of Figs. 49 and 50). Therefore no
false-positive readings were obtained with this method. Based on the performance of the cubic
polynomial interpolation, it was decided that all subsequent damage identification studies would be
done with only the cubic polynomial interpolation function.

V. B. Mode Shape Curvature Method

Damage is associated with decreases in the resonant frequencies, increases in the damping values,
and alterations of the modes of vibration of the structure (Pandey, et al., 1991). The first two
attributes have shown little promise for detecting the presence of damage and their applicability for
locating damage is limited. This inability to locate damage is caused by the fact that two separate
damage situations, dissimilar in extent and/or location, may cause the same shift in these modal
parameters. Furthermore, direct comparison of the pre- and post-damage mode shapes has been
found ineffective in identifying the damaged region unless damage is severe. In an effort to
overcome these restrictions, researchers at Duke University proposed a method capable of not only
locating damage but also estimating its severity. Advantages of the Mode Shape Curvature Method
resemble those described as important features of the Damage Index Method. In addition, the
computation required to implement the Mode Shape Curvature Method is less demanding than the
Damage Index Method.

In Pandey, et al. (1991) the Mode Shape Curvature technique was applied successfully utilizing
displacement mode shapes extracted numerically from finite element models of a cantilever and
simply supported beam. A localized loss of stiffness was simulated simply by reducing the
modulus of elasticity of a single element. The location of damage was varied by imposing a fixed
percentage reduction to the modulus of elasticity sequentially to each element. In each case, the
maximum change in curvature was associated with the vicinity of damage. To further the study,
various levels of damage were simulated by reducing the modulus of elasticity of an individual
element by increasing percentages. Again, the maximum change in curvature occurred at the
location of damage. Furthermore, the maximum change in curvature at the damaged location
increased with each incremental decrease in the modulus of elasticity.

The general idea of this technique is that a stiffness reduction caused by damage will present itself

with an increase in curvature at that same location. This logic is based on the relationship between
curvature and the flexural stiffness of a beam. By definition, curvature is the bending moment in
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the cross-section of a beam divided by its flexural stiffness. Because of this inverse relationship,
for a given moment, decreasing the flexural stiffness of the beam consequently causes an increase
in curvature. Assuming that damage occurs in a localized region, the maximum difference between
the pre- and post-damage mode shapes is expected to be localized in the vicinity of damage.
Because the flexural stiffness is represented as the product of the moment of inertia and the
modulus of elasticity, a reduction in stiffness is produced by a decrease in either quantity. In this
study, the stiffness reduction is associated with a decrease in the moment of inertia because damage
consisted of a loss of cross section and not an alteration of the material properties.

Implementation of this approach requires only a few steps. First, a cubic interpolation function is
fit through the known modal amplitudes associated with the undamaged and damaged structure to
obtain pre- and post-damage mode shape functions. Again, it was decided that only the cubic form
of interpolation will be used because of its performance with the Damage Index Method.
Curvature mode shapes, representative of the structure before and after damage, are then
determined by differentiating the mode shape functions. The absolute value of the difference
between the respective curvature mode shapes is then calculated for each individual mode.
Differences for each mode are added to form a final measure of the change in curvature at a
particular location.

V. B. 1. Mode Shape Curvature Method Applied to Experimental Data

For the cases of increasing damage at the midspan of the north girder, E-1 through E-4, the
absolute difference between the curvature mode shapes for the undamaged and damaged bridge are
plotted in Figs. 51 and 52. The results plotted in Fig. 51 and Fig. 52 were generated using the
SET1 and SET?2 sets of modal data, respectively.

Recall that the largest maximum change corresponds to the location in which damage is most
probable. According to plot (a) of Fig. 51 which corresponds to damage case E-1, the maximum
difference in curvature occurs in the vicinity of nodes 97, 33, and 82 in order of decreasing
maximum change. Noting that damage was located in the vicinity of node 82, the exact damage
location was associated with the third largest change in curvature. For the second damage level,
case E-2, the incorrect damage location at node 33 was eliminated leaving only nodes 96 and 82 as
possible damage areas (see plot (b) of Fig. 51). In this case, the correct damage location was
associated with the second largest change in curvature. For the last two stages, damage cases E-3
and E-4, the maximum difference in curvature occurs in the damaged region (see plots (c) and (d)
of Fig. 51). From these plots, it is evident that the accuracy of the algorithm improves as the
amount of damage increased. the need for a quantifiable method for assessing whether a change in
the curvature indicates damage is apparent in these plots. If these tests were performed blind, it
would be difficult to claim that the plot in Fig. 51d did not identify three damage locations.

For purpose of comparison, a similar scale is used for all four plots of Fig. 51. Note that the
maximum change in curvature at the damage location increases as we progress from plot () to (d).
From this observation, it is evident that the magnitude of the change in curvature increases as more
damage is induced to the bridge. It is also apparent that plot (a) represents the damage in its initial
stage and plot (d) corresponds to the most severe damage. Curvature changes from six modes
were used to generate the plots in Fig. 51.

Using the SET2 collection of modal data, the change in curvature was computed for damage cases
E-1 through E-4 and plotted in Fig. 52. Note that two sets of mode shape curvature data are
presented in each plot of the figure. The first set is the sum of the absolute difference between the
curvature mode shapes of the first bending and first torsional modes, only. The second set
represents an accumulation of the absolute difference in curvature mode shapes for all six modes.
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For all four damage cases, the change in curvature computed using only two modes reached a peak
at the immediate vicinity of damage (Node 106). Moreover, the peak was most distinct for damage
case E-4. For the initial stages of damage (cases E-1 through E-3) the maximum change in
curvature at the true damaged location is accompanied by smaller peaks in adjacent areas. When all
six modes were included, the maximum change in curvature for damage cases E-1 and E-3 did not
coincide with the actual location of damage. For damage cases E-2 and E-4 (see plots (b) and (d)
of Fig. 52), the maximum change in curvature appears at the damaged region regardless of whether
only two or all six modes are used in the calculation. Thus, when damage is not severe, inaccurate
predictions may be made if modes not significantly affected by damage are included in the
calculation of the change in curvature. Furthermore, the true location of damage, as shown by the
maximum change in curvature, is most definite for extreme damage cases.

V. B. 2. Mode Shape Curvature Method Applied to Numericai Data

Similar analyses were done using numerically extracted data from three modes for damage cases A-
1 through A-3 (see Fig. 53). The maximum curvature change for the two initial damage cases A-1
and A-2, plotted in (a) and (b), are not found in the region of damage (nodes 82 and 83) and thus,
offer no clear indication of where damage resides. For damage case A-3, however, the maximum
curvature difference is located in the proximity of node 82 (i.e., the correct damage location).
Incidentally, a significant peak occurred adjacent to the damage region. Again, in a blind test it
would not be obvious that these peaks are not associated with other damage locations. When plot
(c) in Fig. 53, corresponding to damage case A-3 is compared to plot (d) in Fig. 51, corresponding
to damage case E-4, it is seen that the changes in curvature for the analytical case are smaller in
magnitude than those determined from the experimental data. The smaller changes in curvature
associated with the analytical model are caused by the boundary condition specified in these models
(neglecting the piers) and the fact that the cut in the web is smaller than that in the actual
experiments.

Plots of the absolute difference in curvature for the final five damage cases, A-4 through A-8, and
the alternate undamaged case A-9 are presented in Fig. 54. Accurate predictions for the damage
location were made for cases A-4 through A-6 as shown in plots (a), (b) and (c). In each case, the
change in curvature was maximum at the damaged region. Moreover, for damage case A-6, the
two locations of damage (nodes 40 and 100) are evident by recognizing that the maximum
differences in curvature simultaneously occur at these locatlons and these two differences are of
almost equal magnitude.

Cases A-7 and A-8, plotted in (d) and (e) of Fig. 54, which involved intermediate levels of
damage, did show positive signs of damage at the proper locations (Nodes 20 and 40,
respectively) although the clarity was not as refined as that achieved when damage was more
extreme (i.e., cases A-4 and A-5). Damage case A-9, which consisted of a modification of the
original forcmg function and not an incident of damage, resulted in inaccurate indications of
damage as shown in Fig. 54(f) where changes in curvature larger than those associated with
damage cases A-7 and A-8 are observed. The plot in Fig. 54(f) shows the threshold levels of
curvature change that are needed to distinguish damage from random variations in the data analysis
procedures. Thus, in the event that the excitation of the bridge is altered, the modes of vibration of
the structure may be modified which can ultimately lead to faulty predictions of damage using this
technique.

V. C. Change in Flexibility Method
Much of the research to date for damage assessment has focused on utilizing changes in the modal
properties of a structure (i.e., resonant frequencies, damping values, and mode shapes).

Variations in the structural parameters such as the stiffness and flexibility matrices, which can be
derived from modal data, have not received nearly as much attention. One of the techniques for
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detecting damage using changes in the structural parameters is the Change in Flexibility Method
reported by Pandey and Biswas (1994). Differences in the flexibility matrix are used primarily to
identify the presence and location of damage in a structure. Two significant advantages of this
routine are (1) the flexibility matrix can be formulated from a few low frequency modes and (2) a
measure of the change in flexibility can be readily estimated with simple matrix operations. The
first advantage is fortunate because difficulties of measuring high frequency modes in the field
require that a damage detection scheme be able to diagnose damage based solely on modal data for
low frequency modes in order to be practical. Furthermore, the computational labor required to
make the necessary damage diagnosis must be kept to a minimum.

In Pandey and Biswas (1994) the technique was tested using numerical modal data gathered from
analytical beam models with varying boundary conditions and with experimental modal data
gathered from a steel beam supported on elastomeric bearings. For the analytical study, damage
was simulated by reducing the modulus of elasticity of an individual element of the analytical
model. This approach allowed the extent and location of damage to be easily controlled by varying
the decrease in the modulus of elasticity and the location of the damaged element. In each case of
damage, the largest change in flexibility occurred at the location of damage. Furthermore, the
magnitude of the flexibility change increased with reductions in the modulus of elasticity. In the
experimental setup, the wide-flange beam had a splice at its midspan. Various levels of damage
were inflicted by removing the flange splice plate and some additional rows of bolts in the web
plate. In contrast to the analytical investigation, removal of different members of the splice reduces
the moment of inertia at the splice location and not the modulus of elasticity. In either event, the
bending stiffness of the beam is decreased and thus, damage is simulated. Again, the largest
change in flexibility occurred in the damage vicinity (i.e., the splice location) and the flexibility
change increased with reductions in the moment of inertia caused by removal of splice
components.

As shown in Eq. 23, the flexibility matrix is more strongly influenced by the lower frequency
modes. Therefore, an accurate representation of a structure's flexibility can be obtained with a
limited number of low-frequency measured modes. Assuming that a modal survey has been
performed on a structure while in an undamaged condition and then after some damage event, the
flexibility matrices of the structure reflective of the two conditions can be formulated from the
gathered modal data and then subtracted. Because of their inverse relationship, a decrease in
stiffness should result in an increase in flexibility.

As discussed earlier, the calculation of the change in flexibility requires only a few steps.
Flexibility matrices for the undamaged and damaged structures are first formulated from their
associated modal data. The change in flexibility is then evaluated by subtracting the respective
matrices and extracting the maximum absolute value from each column of the difference matrix as
indicated by Egs. 25 and 26. Remembering that a column of the flexibility matrix represents the
deformed shape of the structure when a unit load is applied at the degree of freedom associated
with the column, a vector containing the measures of flexibility change corresponds to the largest
change in flexibility as a unit load is applied, in turn, to each degree of freedom. Theoretically, the
greatest flexibility change should occur when the unit load is positioned at the damaged degree of
freedom.

V. C. 1. Change in Flexibility Method Applied to Experimental Data

For the four cases of actual damage, E-1 through E-4, the change in flexibility computed using the
modal data from SET1 is shown in Fig. 55. The results show that the damage location, element 82
between nodes 82 and 83, is not obvious until the final level of damage. At this stage, the
flexibility change is approximately zero at the ends of the span and increases to a maximum at the
damaged region (see plot (d)).
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The change in flexibility for damage cases E-1 and E-2 was essentially constant along the length of
the span with no distinct peaks (see plot (a) and (b) of Fig. 55). Case E-3 reached a maximum in
the vicinity of node 80 and remained constant up to node 120 (see Fig. 55(c)), thus confining the
damage location to exist within a 40 foot range (approximately 1/4 the span length). The actual
damaged location, element 82, does fall within the affected range.

Although the exact location of damage is not obvious, plots (a) through (c) of Fig. 55 show an
increase in the change in flexibility as we advance from case E-1 to E-3. This increase in flexibility
from stage to stage may be indicative of the growth of damage. Furthermore, there is an increase
in the flexibility change from case E-2 to E-3 caused by severing half of the bottom flange. Since
the bottom flange represents a primary component of the bending stiffness, decreasing its cross-
sectional area by one-half significantly affects the flexibility. Thus, large increases in the change in
flexibility from one damage case to another may reflect the propagation of damage to a main load
carrying component.

The flexibility changes for damage cases E-1 through E-3 computed using the SET2 modal data are
plotted in (a) through (c) of Fig. 56. Plots (a) and (b), corresponding to damage cases E-1 and E-
2, did not give any indications of the true damage location regardless of whether two or six modes
were used to calculate the flexibility matrices. However, the change in flexibility derived from
only two modes shown in plot (c) did reveal a peak in the area of node 106 for damage case E-3.
The change in flexibility obtained using all six modes did not give a clear damage location. For
damage case E-4, the flexibility change is plotted in Fig. 57 as a function of the number of modes
used. According to the figure, the maximum change in flexibility occurs in the vicinity of damage
and converges using only one mode. From this figure it is obvious that damage affects mainly the
first bending and first torsion mode. There is virtually no improvement in the change in flexibility
when the final four modes are included in the calculation.

V. C. 2. Change in Flexibility Method Applied to Numerical Data

Figure 58 shows the resulting flexibility change for damage cases A-1 through A-3 obtained using
the SET3 modal data. Inaccurate predictions for the location of damage were obtained for all three
cases. According to the three plots of Fig. 58, the maximum change in flexibility occurs between
the beam midspan and both ends of the span. Since the derivation of the flexibility matrix is
directly dependent on the modal parameters, inaccuracies in the eigenvalues and eigenvectors will
lead to errors in the flexibility matrix, thus, producing an erroneous change in flexibility. Although
damage went undetected, some indication of the presence of damage is revealed by comparing the
magnitudes of the three plots. As we progress from case A-1 to A-3 the change in flexibility
increases indicating that the amount of damage has also increased.

The change in flexibility vectors computed from the SET3 modal data for damage cases A-4, A-5,
and A-6 are shown in (a), (b), and (c) of Fig. 59, respectively. For all three cases, the maximum
change in flexibility coincided with the damaged location. When damage occurred at two locations
(case A-6), the change in flexibility at the location closer to midspan exceeded the change at the
other damaged region (see Fig. 59(c)). However, the lack of a procedure to quantify changes
associated with damage could lead one to believe that damage occurred in three locations for this
case. Areas adjacent to the maximum bending moment region of the structure have been shown to
experience a larger change in flexibility than regions positioned further away (Pandey and Biswas,
1994). This observation is also justified by comparing the change in flexibility presented in plots
(a) and (b) of Fig. 59. Again, the results plotted in (a) which correspond to a damage location
closer to midspan exceed those shown in plot (b). Thus, the method generates larger changes in
flexibility when damage occurs in a region of large bending moment. Unsuccessful predictions
were made for the alternate undamaged case A-9 in addition to the damage conditions A-7 and A-8
as shown in the three plots (d), (e), and (f) of Fig. 59.
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V. D. Change in Uniform Flexibility Shape Curvature Method

Two ways in which to portray a structure's flexibility is in terms of the uniform load flexibility
vector and the unit load flexibility matrix. The uniform load flexibility (or uniform load surface)
corresponds to the deflected profile of the structure obtained by simultaneously applying a unit load
at each degree of freedom. Individual columns of the flexibility matrix correspond to the deflected
shape of the structure as a unit load is placed at the particular degree of freedom associated with
that column. Hence, column 1 represents the structure's deflected shape with a unit load
positioned at degree of freedom one, column 2 represents the structure's deflected shape with a
unit load positioned at degree of freedom two, and so on. By superposition, the uniform load
surface is the sum of individual columns of the unit load flexibility matrix. Knowing the flexibility
of the structure, before and after damage, the question arises if the change in curvature between the
pre-damage flexibility and post-damage flexibility can be used to locate and possibly estimate the
extent of damage.

Zhang and Aktan (1995) developed a damage detection scheme by combining the basic concepts of
the Mode Shape Curvature Method and the Change in Flexibility Method. To demonstrate the
technique, Zhang and Aktan used a two-dimensional grid model of a 3-span continuous steel
stringer bridge. The grid model was first calibrated to match the resonant frequencies and mode
shapes from an experimental modal test. Following the calibration, five states of damage were
simulated by reducing the modulus of elasticity by increasing percentages at midspan of one of the
girders. For each case of damage, the curvature difference of the structure's uniform load surface
from undamaged to damaged condition was greatest at the affected area. Furthermore, there was
an increase in the curvature difference for each decrease in the modulus of elasticity. The authors
also show that direct comparison of the uniform load surface, before and after damage, reveals the
location of damage only for extreme levels of damage.

Assuming that modal data had been collected for the structure in an undamaged condition and after
damage, it is possible to derive a pre- and post-damage flexibility matrix. Recall that each column
of the flexibility matrices contains a set of coordinates corresponding to the deflection profile of the
structure caused by a unit load at the associated degree of freedom. The uniform load flexibility is
them obtained by multiplying the flexibility matrix times a vector containing one at each entry with
the same column dimension as the flexibility matrix or, equivalently, by summing individual
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columns of the unit flexibility matrix. Next, the absolute value of the curvature change for each
unit load flexibility is computed by fitting a cubic polynomial to the flexibility shape and then these
shapes are summed. As in the Mode Shape Curvature Method, a loss of cross-section (i.e.,
stiffness reduction) should result in an increase in curvature.

This method for determining the curvature change differs slightly from the approach taken by
Zhang and Aktan (1995) in that the absolute value of the curvature change is first computed and
then accumulated. In Zhang and Aktan (1995), the curvature change is first accumulated and then
the absolute value is taken. In order to switch the order in which the summation and absolute value
were performed, each unit load flexibility shape needed to be considered, which required a larger
amount of computation. Although this adjustment was minor, a significant improvement in the
results was achieved.

V. D. 1. Change in Uniform Flexibility Shape Curvature Method Applied to
Experimental Data

The absolute difference in curvature of the unit load flexibility shapes obtained from the SET1
modal data for damage cases E-1 through E-4 are shown in Fig. 60. According to the figure, the
true damage location is unclear until the third state of damage. At the second level of damage (case
E-2), the greatest curvature difference occurs at node 96 and then at node 82, the correct damage
location. From (c) and (d) of Fig. 60, the largest peak of the absolute difference occurs at the
damaged location. Comparison of plots (a) and (b) shows relatively no difference between the
magnitudes of the curvature change. This result is expected because the web does not significantly
influence the bending stiffness of the girder. However, the transition from damage case E-2 to E-3
did cause a large jump in the extent of the change in curvature. An even larger jump occurred from
the damage case E-3 to E-4 transition. Recall that the final two damage cases involved severing the
bottom flange of the girder. Because bending is primarily resisted by the girder flanges and the
concrete deck, damage to these components decreases the flexural stiffness by a larger proportion.
Thus, by inspecting the magnitude difference in the change in curvature between two incidents of
damage it may be possible to determine if damage has progressed into a main load carrying
member. Again, it can be seen that in Fig. 60(c) that without a quantitative method for assessing if
changes in curvature are indicative of damage, one could be mislead to believe that damage
occurred in two locations.

Figure 61 presents the results for damage cases E-1 through E-3 that were determined using the
modal data from SET2. The contribution of all six modes were included in the computation of the
change in curvature presented in plots (a) through (c). As shown in these three plots, the change in
curvature algorithm failed to identify the damage location. The maximum difference in curvature
for damage cases E-1 through E-3 occurred in the vicinity of nodes 124, 36, and 71, respectively,
none of which represent the actual location of damage. The change in curvature computed for
damage case E-4 is plotted in Fig. 62. Again, the contribution of all six modes was included in the
calculation. For this case, the algorithm did succeed in identifying the true location of damage as
shown by the peak at node 106.

V. D. 2. Change in Uniform Flexibility Shape Curvature Method Applied to
Numerical Data

Damage cases A-1 and A-2 went undetected as shown in (a) and (b) of Fig. 63 using the SET3
collection of modal data. Peak values of the curvature difference occurred at two incorrect
locations: the quarter points of the span. When damage case A-3 was induced, however, the
largest curvature change occurred in the vicinity of damage (see Fig. 63(c)). A notable change also
occurred approximately 20 feet from the damage location.
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From (a) and (b) of Fig. 64, the maximum change in curvature of the unit load flexibility shapes
occur at the quarter point and at an eighth point, respectively. These locations correspond to the
exact areas of damage for cases A-4 and A-5. Comparison of these two plots also shows that the
magnitude of the curvature change was greater when the damage was positioned closer to the end
of the span. This result is expected because the damage at the quarter point is near a splice plate,
which under dead load represents an inflection point (i.e., transition from positive to negative
moment or vice versa). The damage positioned closer to the end of the span is in a region of large
negative moment. Previous studies show that the curvature change is greatest when the damage
occurs in high stressed areas such as interior supports of continuous beams.

Multiple damage was identified accurately as shown by the locations of the two maximum peaks in
plot (c) of Fig. 64. Note that the size of the curvature change at the damage location nearer to
midspan exceeded the difference at the quarter point. Again, the damage closer to midspan is in a
higher stressed region (i.e., large positive moment) and will therefore experience larger changes in
curvature. Although the magnitude of the change in curvature for the alternate undamaged case A-
9 is higher than for damage case A-7, plots (d) and (f) of Fig. 64 are essentially identical. In both
damage cases, the algorithm produced ambiguous results. Plot (e) of Fig. 64 did show the
maximum change in curvature in the vicinity of damage. These results show that detecting the
location of damage in areas of low stress becomes even more difficult when the degree of damage
is not severe. Moreover, it is easier to detect damage in higher stressed areas.

V. E. Change in Stiffness Method

In Zimmerman and Kaouk (1994), a Minimum Rank Update Theory (MRPT) was developed for
locating and estimating the degree of damage in a structure. The method was applied successfully
to two- and three-dimensional trusses. First, a FEM of the test structure is constructed with no
effort made to match the measured modal parameters. Next, the FEM is refined and calibrated to
obtain an updated model capable of reproducing the vibrational parameters measured
experimentally. When this is accomplished, the analytical model is believed to represent the
stiffness of the actual structure and therefore is considered capable of simulating the structure's
actual behavior. No modification is made to the original mass distribution of the structure since the
modeling errors is assumed to be strictly related to the stiffness. Damage is then introduced to the
calibrated model by removing and/or reducing the modulus of elasticity of various members of the
truss. Resonant frequencies and mode shapes associated with the damaged condition together with
the original mass, stiffness, and damping matrices of the structure are then used to compute a
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damage vector from Eq. 33. Alternatively, perturbations in the structure's mass and stiffness
matrices can be substituted for the original matrices and the damage vector can be computed using
Eq. 33. However, calibrated models of the damaged structure are required to obtain these
perturbation matrices. According to the damage array, the largest values occur at the degrees of
freedom associated with the strut that has been removed or reduced in stiffness.

In Kaouk and Zimmerman (1994), the MRPT was augmented to include the case when no original
analytical model is available. Using only pre- and post-damage modal properties of a structure, the
technique is able to approximate the location and extent of damage in two- and three-dimensional
truss-like structures. The technique was exercised using both numerical and experimental modal
properties. First, a baseline representation of the mass and stiffness of the structure is obtained
using the pre-damage modal parameters. With the healthy model determined, the damage array is
then computed utilizing the post-damage modal properties. Although the results were shown
favorable, the authors conclude that the damage assessment algorithms perform better when an
original analytical model is available.

In this study, damage is assumed to affect only the stiffness properties of the structure. The
analysis is further simplified in that stiffness matrices representative of the structure before and
after damage are formulated from a set of pre- and post-damaged modal data generated
experimentally or numerically. Hence, no attempt was made to match the vibrational response of
an analytical model to a set of measured resonant frequencies and mode shapes. By utilizing the
connectivity of the sensor locations it is possible to improve the stiffness matrix to one that is more
physically meaningful. Each node of the damage detection model is first assumed to be connected
to its adjacent node or nodes. Under this assumption, no relationship exists between the node and
those positioned further away. Thus, stiffness coefficients off the tri-diagonal can be eliminated
and forced to zero. Following this modification, the reduced pre- and post-damage stiffness
matrices are subtracted and multiplied by the damaged mode shape to obtain a damage vector. This
approach resulted in improved results as opposed to using fully populated stiffness matrices.

Derivation of the stiffness matrix from modal data requires two important criteria to be met.
Ideally, the number of extracted modes should equal the number of sensors and all modes should
be measured or at least the high frequency modes. Considering that the modal data extracted for
this investigation consisted solely of low frequency modes and the number of modes recorded was
less than the number of sensors, the two requirements for obtaining an accurate representation of
the stiffness matrix were not met in their entirety.

V. E. 1. Change in Stiffness Method Applied to Experimental Data

The damage vector computed using six modes of the SET1 modal data for the four damage cases
E-1 through E-4 is plotted in Fig. 65. Based on the plots, the algorithm was unable to identify
damage until the bottom flange was entirely severed (i.e., damage case E-4). At intermediate cuts,
the damage location algorithm failed to detect the affected area.

The first singular vector of scaled damage matrix for damage cases E-1 through E-4 determined
using the SET2 modal data are shown in plots (a) through (d) of Fig. 66. This normalization of
the damage vector was done to account for stiff areas near the interior supports of the bridge.
Otherwise, the largest peaks of the damage vector would always reside at the interior supports. All
four plots show a peak in the vicinity of damage when only the first bending and first torsional
modes are used. When all six modes were included in the calculation, the algorithm generated
ambiguous results for damage cases E-1 through E-3 and the peak at the damage location for
damage case E-4 was not as distinct. Once more, contributions of unaffected modes appear to be
disrupting the performance of the algorithm.
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V. E. 2. Change in Stiffness Method Applied to Numerical Data

Figure 67 displays plots of the damage location vector for the three damage cases A-1, A-2, and A-
3 computed using the SET3 modal data. For all three cases, the damage vector failed to locate the
damage. The damage vector for case A-3 showed large values close to node 50 which is about 30
feet from the true damage location. Compared to cases A-1 and A-2, the magnitude of the damage
vector for case A-3 is extremely large. This occurs because the finite element model did not
produc(;: changes in the modal properties of the structure until the bottom flange was completely
severed.

The damage vector was able to identify the exact location of damage for case A-4 (Fig. 68). For
case A-5, the predicted location was about 5 feet away from the actual damaged area. Hence, the
node numbers at which damage was clearly shown for damage cases A-4 and A-5 were 40 and 25,
respectively (see plots (a) and (b) of Fig. 68). For damage case A-6 (see plot (¢) of Fig. 68), the
largest positive peaks of the location vector occurred at nodes 40 and 100 which represent the
damaged nodal locations exactly. Damage cases A-7 and A-8 remained undetected as shown in
plots (d) and (e). A positive peak occurred at node 100 for damage case E-9, which is misleading
since no damage is present (view plot (f}).

VI. SUMMARY AND CONCLUSIONS

A study was undertaken to compare five damage identification methods that have been proposed in
the technical literature for bridge applications. This comparison was accomplished with
experimental data from the I-40 Bridge over the Rio Grande in Albuquerque, NM, and numerically
generated obtained data from finite element simulations of the same bridge. Tests performed to
obtain the experimental modal data from the bridge in an undamaged and in various damaged
conditions are summarized in Farrar, et al. (1994). Development of the finite element models used
in the numerical study is summarized in Farrar, et al. (1996). After benchmarking a finite element
model against measured modal data from the I-40 Bridge in its undamaged and damaged condition,
numerical studies were performed to further evaluate the various damage detection techniques
when they were applied to other damage scenarios.

In choosing the damage identification methods to be compared, the authors have limited their study
to those requiring only measured responses before and after damage as opposed to those requiring
a correlated FEM. Although the FEMs in this study were benchmarked against measured modal
data, this benchmarking was done only to verify that the models were accurately predicting the
dynamic response of the structure. Model-updating damage identification methods, which require
correlated FEMs, were not used in this study because it is the author's opinion that it would be
impractical to develop correlated FEMs for a large population of bridges.

The five damage identification algorithms that were investigated require mode shape data from the
undamaged and damaged structure. In addition, some of the methods require resonant frequencies
corresponding to the undamaged and damaged structure as well as mass-normalized mode shapes.
To obtain mass-normalized mode shapes experimentally, the excitation force must be measured
along with the excitation point response. However, it is the authors' opinion that if automated
damage identification methods are to become an accepted part of a comprehensive bridge
management system, these methods will have to monitor the response of a bridge to ambient
(typically traffic-induced) vibration, hence a measure of the input will not be available. To this end,
the data reduction methods used in the numerical portion of this study have assumed that the input
is not monitored.

Experimental damage cases correspond to four cuts made in the web and extended down to and

through the bottom flange of the north plate girder at the center of the middie span. The
numerically simulated damage cases correspond to similar cuts made at various locations along the
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length of the middle span and one case where two different cut locations were specified in the
middle span. Also, in the numerical studies, a final undamaged analysis was performed by
replacing the original random forcing function with one that had identical frequency content and an
identical peak amplitude. This case was used to determined if the algorithms would yield a false-
positive reading, that is identify that damage had occurred when data from two different
undamaged cases were analyzed.

Three sets of data, two experimental and one analytical, were used in this study. The first set
(SET1) corresponds to a refined set of accelerometers located on the span of the girder where
damage was introduced. Response measurements were made on the bridge before damage was
introduced and after each level of damage. Although a hydraulic shaker provided the excitation for -
these tests, to simulate an ambient test, the input from the shaker was not recorded. Resonant
frequencies were determined by curve fitting cross-correlation functions as discussed in Farrar et
al. (1994). Mode shapes were determined from the phase and amplitude information contained in
the CPS calculated with respect to a reference accelerometer. The mode shapes were normalized
assuming an identity matrix for the mass matrix. Similar data reduction procedures were applied to
nodal point accelerations, corresponding to locations that approximate the SET1 accelerometers,
determined from the finite element analyses. These data are referred to as SET3. Also,
measurements from a coarse set of accelerometers that were located on all three spans were used to
form the data set referred to as SET2. Data from these accelerometers were recorded on the bridge
before damage was introduced and after each level of damage. Again a hydraulic shaker provided
the input for these measurements, and for SET?2 this input was measured. These modal data were
reduced using standard measured-input experimental modal analysis methods, and, hence, yielded
mass-normalized mode shapes.

In general, all methods identified the damage location correctly for a cut, either the actual
experimental one or the numerically simulated ones, completely through the bottom flange.
However, for several of these methods, if they had been applied blindly, it would be difficult to tell
if damage had not also occurred at locations other than the actual one. The methods were
inconsistent and did not clearly identify the damage location when they were applied to the less
severe damage cases. Results of this study show that the Damage Index Method performed the
best when the entire set of analyses and experiments are considered. This performance is attributed
to the methods of normalizing changes in the parameters that are used to indicate damage relative to
the undamaged case. Also, this method is the only one that specifies criteria to quantify when
changes in the monitored parameters are indicative of damage. Such a criteria is essential when
trying to determine if damage has occurred at more than one location and for preventing false-
positive readings. This criteria could, most likely, be adopted to the other methods used in this
study.

Tables XII through XIV summarize the results of the five damage detection algorithms applied to
the experimental and numerical modal data. In Table XII it can be seen that the Damage Index
Method identified most of the damage cases correctly. This performance is considered noteworthy
when one considers that the lowest level of damage, corresponding to only a 0.15 % reduction in
the cross-section moment of inertia of the plate girder at the damage location, was located with the
coarse set of accelerometers using only two measured modes as shown in Table XIII. The
Damage Index Method failed only for damage case A-7, and for identification of the second
damage location in case A-6. For the remaining damage cases, the location of damage was either
clearly identified or narrowed down to two locations. It is pointed out that this method has the
attractive feature of not needing mass-normalized mode shapes.

The Mode Shape Curvature Method also performed well. Only damage cases A-1 and A-2 went

undetected using this technique, although for some of the lower levels of damage several locations
were identified when there was only one actual damage location.
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TABLE XII
Summary of Damage Detection Results using
Experimental Modal Data from Refined Set of Accelerometers (SET1)
, Change in
Uniform
Mode Flexibility
Damage Shape Change in Shapes Change in
Damage Index Curvature | Flexibility | Curvature | Stiffness
Case Method Method Method Method Method
E-1: 2" web cut centered
vertically at the girder mid- ® eoo ° ° °
height positioned at the
girder midspan
"E-2: 6 web cut to topside
of bottom flange positioned ® ¢o ° see °
at the girder midspan
E-3: 6" web plus half of
bottom flange cut positioned ° °® ° ° °
at the girder midspan
E-4: 6' web plus full
bottom flange cut positioned ® ® ° ® ®
at the girder midspan
® Damage located
oo Damage narrowed down to two locations
ees Damage narrowed down to three locations
o Damage not located

The Change in Flexibility Method had problems identifying less severe damage cases. As seen in
Table XII, the location of damage was detected only for damage case E-4. Using the coarse set of
accelerometer measurements (see Table XIII), the algorithm succeeded for cases E-3 and E-4 and
failed for cases E-1 and E-2. Only damage cases A-4 through A-6, all of which involved severe
damage, were detected from the numerical modal data (see Table XIV). Again, the algorithm failed
to detect intermediate levels of damage when applied to the numerical data. Unexpectedly, damage
case A-3 also went undetected although it consisted of a high level of damage.

The Change in Uniform Flexibility Shape Curvature Method performed satisfactorily using the
experimental modal data from the refined set of accelerometers (SET1). The algorithm failed
completely only for damage case E-1. This technique did not perform well when applied to the
experimental data obtained from the coarse set of accelerometers (SET2). For damage cases E-1
through E-3, the technique generated ambiguous results. Using the numerical modal data, damage
corresponding to cases A-1, A-2, and A-7 went undiscovered.

In contrast to the Change in Uniform Flexibility Shape Curvature Method, the Change in Stiffness
Method improved when applied to the modal data from the coarse set of accelerometers.
Significant improvements were also shown when only the first two modes were used instead of all
six as shown in Table XIII. Using the refined measurements, only the final damage case (E-4)
was detected, whereas all damage cases were detected from the SET2 modal data. When applied to
the numerical data, the technique generated similar results as the Change in Flexibility Method (see
Table XIV).
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TABLE XIII
Summary of Damage Detection Results using
Experimental Modal Data from Coarse Set of Accelerometers (SET2)
Change in
Uniform
Mode Flexibility
Damage Shape Change in Shapes Change in
Damage Index Curvature | Flexibility | Curvature | Stiffness
Case Method Method Method Method Method
E-1: 2" web cut centered
vertically at the girder mid- * % * % ° ° ok
height positioned at the
| girder midspan
E-2: 6' web cut to topside
of bottom flange positioned * % * ° ° o
at the girder midspan
E-3: 6' web plus half of
bottom flange cut positioned *%* * % * © *x
at the girder midspan
E-4: 6" web plus full
bottom flange cut positioned * * * * *
at the girder midspan
* Damage located
* % Damage located using only 2 modes; damage unclear using all 6 modes
o Damage not located

Although not rigorously verified, it appeared that using an assumed identity mass matrix to
normalize the modes did not adversely affect the methods that require mass-normalized mode
shapes. This result is attributed to the fact that the measured modes resemble beam-like response
and the mass of the bridge is uniformly distributed along the longitudinal axis of this "beam".

When this study was performed, there was concern that the discontinuities in the plate girder where
the flanges change dimension and at the splice plate locations could cause erroneous indications of
damage by the various methods. With the experimental data from the coarse set of accelerometers
for the lower level damage cases E-1 through E-3, the damage index method gave false indications
of damage at locations where the flanges abruptly changed dimensions (elements 140 and 158) as
well as at other locations that did not correspond to any significant change in geometry (elements
35 and 135). However, other locations of changes in the flange dimensions did not show
indications of damage. Except for the damage indicated at element 35 when six modes were used,
the other false reading were not consistent from one damage case to the other. For the damage
index method the false reading were more pronounced when six modes were used as opposed to
two modes. No false indications of damage were given by the Damage Index Method when data
from the refined set of accelerometers were used. When the damage index method using the cubic
polynomial interpolation was applied to the numerical data, false indications of damage were found
for cases A-1, A-2 and A-7 at element 20, which corresponds to the location of the change in
flange dimension. However, for these cases no erroneous indications of damage result when the
cubic spline interpolation function is used. For case A-9 a false positive reading is almost given at
element 20.

The Mode Shape Curvature method shows peaks in the change in curvature reading at various
locations near the discontinuities when applied to the SET2 experimental data, but false peaks are
also evident at locations that do not correspond to discontinuities. When applied to the numerical
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TABLE XIV

Summary of Damage Detection Results using
Numerical Modal Data from Refined Set of Monitored Responses (SET3)

Damage
Case

Damage
Index
Method

Mode
Shape
Curvature
Method

Change in
Flexibility
Method

Change in
Uniform
Flexibility
Shapes
Curvature
Method

Change in
Stiffness
Method

A-1: 3.5 web cut to topside
of bottom flange positioned
at the girder midspan

o]

(o]

o}

o]

A-2: 3.5 web plus half of
bottom flange cut positioned
at the girder midspan

A-3: 3.5 web plus full
bottom flange cut positioned
at the girder midspan

A-4: 3.5 web plus full
bottom flange cut positioned
40' from the interior support

A-5: 3.5" web plus full
bottom flange cut positioned
20' from the interior support

A-6: 3.5" web plus full
bottom flange cuts

positioned 40' from the
interior support and 20'

®
one damage

location was

not identified

from the girder midspan

A-7: 3.5 web cut to topside
of bottom flange positioned
40" from the interior support

A-8: 3.5 web cut to topside
of bottom flange positioned i * ° . °
20' from the interior support

® Damage located

e Damage narrowed down to two locations
eee Damage narrowed down to three locations
o Damage not located

data, this method shows significant changes in curvature at element 20 and element 140, as well as
other locations for cases when the damage was located elsewhere. Similar results were obtained
with the Change in Uniform Flexibility Shape Curvature Method. Although significant changes in
the monitored parameter where noted at locations that did not correspond to damage, The Change
in Flexibility method and the Change in Stiffness Method did not give false indications of damage
at locations that could be associated with abrupt changes in geometry of the structure. In
summary, no consistent trends could be observed in this study regarding the effects of abrupt
geometric discontinuities on the ability of the various methods to correctly identify damage.

The authors acknowledge that recently reported improvements to the damage identification methods
used in this study may offer enhanced capabilities to detect damage from changes in measured
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modal properties. As an example, Doebling (1995) investigated the problem of assembling
flexibility matrices from measured modal data. Methods for calculating residual flexibilities (the
contribution of the unmeasured modes to the flexibility matrix) were developed and shown
effective in improving the accuracy of the flexibility matrices. Using the experimental modal data
corresponding to the coarse set of accelerometers, the flexibility shape of the I-40 Bridge with a
unit load positioned at the damage location was derived with the bridge undamaged and then for the
four experimental damage conditions. Comparison of the flexibility shapes revealed a local
increase in flexibility at the damage location during the progression from the 2' web cut to the 6'
web plus total flange cut. Because the Change in Flexibility Method and the Change in Uniform
Flexibility Shape Curvature Method rely heavily on the accuracy of the flexibility matrices, their
performance may be improved by deriving the flexibility matrices in accordance with Doebling
(1995).

A more refined application of the Change in Stiffness Method to the I-40 Bridge can be found in
James, et al. (1995). In this investigation, an attempt was made to derive mass and stiffness
matrices, which better resemble the properties of the structure, by assuming a certain connectivity
between the sensors. Under this assumption, terms of the mass and stiffness matrices not
reflective of the assumed sensor connectivity are forced to zero. The matrices are further modified
by separating the portion reflective of the assumed connectivity from the portion not reflective of
the assumed connectivity. By considering the mass and stiffness matrices associated with the
assumed model of the structure, the performance of the Change in Stiffness Method was
improved.

The fact that all the damage identification algorithms except the Damage Index Method gave false-
positive readings is of concern, particularly when one considers the possibility of implementing
these algorithms in the field as part of an automated bridge surveillance system. Although not
verified because of the need to run many more time-history analyses, it is the authors' opinion that
forming the CPS or CPSD from more averages will help to alleviate this problem with false-
positive readings.

Another observation from this study, which the authors feel should be emphasized, is that the
Damage Index Method is the only method tested that has a specific criteria for determining if
damage has occurred at a particular location. The other methods only look for the largest change in
a particular parameter and it is ambiguous at times to determine if these changes indicate damage at
more than one location. This ambiguity is illustrated in Figs. 51d and 60d where, in a blind test, it
would be difficult to tell if damage has occurred at one or three locations. The criteria used by the
damage index method for determining if a change in the damage index corresponds to actual
damage is to look for statistical outliers in the population of all damage indices. It is the authors'
.opinion, though again not rigorously verified analytically, that this method will have difficulties if
numerous damage locations are present (implying that the outliers will be closer to the mean) as
was indicated by damage case A-6.

Notable contributions of this work include: (1) a summary of research reported in the technical
literature related to the field of damage detection algorithms applied to bridges; (2) the generation of
numerical time-history data from a benchmarked FEM of the I-40 Bridge for a variety of damage
scenarios which required approximately one day of CPU time on a CRAY-YMP computer; (3) an
unbiased, direct comparison of various linear damage identification methods when applied to a
common set of damage scenarios. The authors acknowledge that many other damage identification
methods exist and an obvious extension of this work would be to apply these methods to the same
data sets reported herein.
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APPENDIX A

EXPERIMENTAL MODE SHAPE DATA USED WITH DAMAGE
IDENTIFICATION ALGORITHMS

TABLE A-1
Undamaged Mode Shape Data From Refined -Sensor, Cross-Power Spectra

Mode 1 : 2.500 Hz Mode 2 : 2.969 Hz mode 3 : 3.562 Hz

mag. phase mag. phase mag. phase
Pt. g2x10-? (degrees) 22x10-9 (degrees) 92x10-9 (degrees)
X1 2.202E+01 -2.532E+00 3219E+01 -5.971E-01 1.010E+01 1.760E+02
X2 2.827E+02 6.782E-01 3.789E+02 2.114E-01 1.074E+02 1.862E+00
X3 5.698E+02 0.000E+00 7.582E+02 0.000E+00 1.790E+02 0.000E+00
X4 8.051E+02 5.495E-01 1.084E+03 4.129E-01 1.697E+02 1.111E+00
X5 9.764E+02 2.727E-01 1.306E+03 3.224E-01 1.007E+02 2.866E+00
X6 1.004E+03 3.346E-02 1.351E+03 4.066E-01 1.702E+01 9.825E+00
X7 9.478E+02 6.762E-02 1.256E+03 8.007E-01 7.686E+01 -1.791E+02
X8 7.933E+02 -7.207E-02 1.059E+03 7.976E-01 1.478E+02 1.791E+02
X9 5.827E+02 2.871E-01 7.872E+02 1.106E+00 1.682E+02 1.790E+02
X10  |2.647E+02 -2.878E-01 3.643E+02 8.772E-01 9.043E+01 -1.789E+02
X11  |2.550E+01 -7.886E-01 4.064E+01 -4.411E+00 1.555E+01 -2.091E+01

TABLE A-2
Damaged Mode Shape Data From Refined-Sensor, Cross-Power Spectra
Two-Foot-Cut at Center of the Web

Mode 1: 2.531 Hz Mode 2 : 3.000 Hz mode 3 : 3.594 Hz

mag. phase mag. phase mag. phase
Pt.  |g2x10°° (degrees) 92x10-9 (degrees) 92x10-9 (degrees)
X1 1.672E+01 -6.427E+00 2.703E+01 2.436E+00 1.684E+01 1.648E+02
X2 2.180E+02 8.009E-01 3.145E+02 4.196E-01 1.360E+02 7.140E-01
X3 4.389E+02 0.000E+00 6.257E+02 0.000E+00 2.285E+02 0.000E+00
X4 6.196E+02 7.284E-01 8.937E+02 6.380E-01 2.087E+02 7.099E-01
X5 7.508E+02 4.059E-01 1.074E+03 4.360E-01 1.106E+02 4.188E+00
X6 7.797E+02 2.343E-01 1.117E+03 4.838E-01 1.692E+01 1.167E+02
X7 7.322E+02 1.180E-01 1.034E+03 9.206E-01 1.362E+02 1.709E+02
X8 6.124E+02 3.210E-02 8.697E+02 8.814E-01 2.236E+02 1.735E+02
X9 4.487E+02 3.473E-01 6.446E+02 1.315E+00 2.408E+02 1.750E+02
X10 |2.039E+02 -3.884E-01 2.989E+02 1.185E+00 1.306E+02 1.758E+02
X11 1.927E+01 -5.214E+00 3.205E+01 9.973E-01 1.931E+01 -1.828E+01
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TABLE A-3
Damaged Mode Shape Data From Refined-Sensor, Cross-Power Spectra
Six-Foot-Cut to Bottom of the Web

Mode 1: 2.531Hz Mode 2 : 3.000 Hz mode 3 : 3.531 Hz

mag. phase mag. phase mag. phase
Pt. 92x10-2 (degrees) 22x10-9 (degrees) g2x109 (degrees)
X1 2.251E+00 1.277E+00 1.096E+01 7.615E+00 4.838E+00 1.715E+02
X2 2.757E+01 5.624E-01 1.247E+02 4.957E-01 3.667E+01 1.639E+00
X3 5.504E+01 0.000E+00 2.511E+02 0.000E+00 6.263E+01 0.000E+00
X4 7.915E+01 5.758E-01 3.584E+02 2.468E-01 5.941E+01 1.028E+00
X5 9.636E+01 2.272E-01 4.314E+02 7.153E-02 3.533E+01 1.918E+00
X6 9.941E+01 1.606E-01 4.470E+02 6.585E-02 5.963E+00 1.430E+01
X7 9.346E+01 1.084E-01 4.142E+02 3.891E-01 2.770E+01 1.764E+02
X8 7.826E+01 -1.151E-01 3.462E+02 4.062E-01 5.162E+01 1.776E+02
X9 5.739E+01 2.789E-01 2.568E+02 9.323E-01 5.798E+01 1.780E+02
X10  |2.621E+01 -1.641E-01 1.186E+02 1.199E+00 3.134E+01 1.788E+02
X11  |2.555E+00 4.546E+00 1.350E+01 1.000E+01 5.119E+00 -8.770E+00

TABLE A-4
Damaged Mode Shape Data From Refined -Sensor, Cross-Power Spectra
Six-Foot-Cut to the Bottom of the Web and Cut Through Half the Bottom Flange

Mode 1 : 2.469 Hz Mode 2 : 2938 Hz mode 3 : . 3.500 Hz

mag. phase mag. phase mag. phase
Pt. 92x10-9 (degrees) 22x10-9 (degrees) 02x10-9 (degrees)
X1 1.604E+01 -7.263E-01 3.612E+01 7.879E-01 7.300E+00 1.751E+02
X2 1.951E+02 3.378E-01 4.225E+02 4.739E-02 6.524E+01 1.112E+00
X3 3.907E+02 0.000E~+00 8.506E+02 0.000E+00 1.099E+02 0.000E+00
X4 5.560E+02 5.551E-01 1.221E+03 2.726E-01 1.035E+02 6.430E-01
X5 6.787E+02 1.996E-01 1.480E+03 1.559E-01 5.986E+01 1.800E+C0
X6 7.001E+02 -2.605E-02 1.535E+03 1.540E-01 8.325E+00 8.103E+00
X7 6.569E+02 -4.889E-02 1.427E+03 4.738E-01 5.129E+01 -1.799E+02
X8 5.493E+02 -6.362E-02 1.196E+03 5.469E-01 9.388E+01 1.793E+02
X9 4.031E+02 5.275E-01 8.842E+02 9.250E-01 1.04SE+02 1.794E+02
X10  |1.824E+02 -2.169E-01 4.062E+02 4.199E-01 5.656E+01 -1.797TE+02
X11 1.851E+01 -3.758E+00 4.229E+01 -1.675E+00 8.894E+00 -1.922E+01
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Damaged Mode Shape Data From Refined-Sensor, Cross-Power Spectra
Six-Foot-Cut to the Bottom of the Web and Cut Through the Entire Bottom Flange

TABLE A-5

Mode 1: 2312 Hz Mode 2 : 2.844 Hz mode 3 : 3.500 Hz

mag. phase mag. phase mag. phase
Pt. g2x10-9 (degrees) 22x10-9 (degrees) 92x10-9 (degrees)
X1 1.230E+00 1.070E+01 9.110E+00 -1.472E+00 3.862E+00 -1.791E+02
X2 1.577E+01 4.181E-01 1.079E+02 4.261E-01 3.866E+01 1.152E+00
X3 3.252E+01 0.000E+00 2.228E+02 0.000E+00 6.535E+01 0.000E+00
X4 4.938E+01 3.772E-01 3.417E+02 2.078E-01 6.257E+01 2.756E-01
X5 6.509E+01 -71.649E-02 4.445E+02 5.227E-02 3.870E+01 -5.862E-02
X6 7.350E+01 -4.978E-01 5.035E+02 2.559E-02 8.478E+00 -2.865E+00
X7 6.477TE-+01 -4.358E-01 4.363E+02 2.366E-01 2.647E+01 ~-1.788E+02
X8 5.053E+01 -3.573E-01 3.405E+02 1.365E-01 5.048E+01 1.798E+02
X9 3.508E+01 1.584E-01 2.388E+02 4.811E-01 5.770E+01 1.793E+02
X10 |1.504E+01 6.280E-01 1.059E+02 -2.621E-01 3.171E+01 1.790E+02
X11  |1.354E+00 8.664E+00 1.172E+01 1.527E+00 4.446E+00 1.856E+00
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TABLE A-6

Test t16tr Undamaged Forced-Vibration Coarse-Sensor
Global Polynomial Curve-Fit Results

Mode 6

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
F=2.48 Hz, F=2.96 Hz, F=3.50 Hz, F=4.08 Hz, F=4.17 Hz, F=4.63 Hz,
Location {=1.06 % (=129 % (=152 % (=110 % {=0.86 % (=092 %
S1 M=257u 173u 472u 702u 513u 414u
P=184 353 12.9 358 176 5.63
S2 M=6.90m 5.55m 0.014 0.013 0.011 9.88m
P=174 360 1.72 6.25 172 2.90
S3 M=0.010 8.38m 0.019 0.017 0.015 0.013
P=174 1.39 1.99 6.99 173 2.99
S4 M=8.01m 6.98m 0.013 9.94m 0.010 7.67m
P=178 4.00 3.08 8.91 175 4.04
S5 M=16.6u 137u 716u 1.17m 609u 1.03m
P=70.3 165 3.55 2.70 172 1.59
S6 M=0.014 0.014 4.48m 7.72m 3.44m 7.49m
P=358 180 172 355 10.8 357
s7 M=0.023 0.024 1.04m 0.015 1.89m 0.014
P=3.33 183 139 0.626 58.4 0.09
S8 M=0.015 0.016 3.87m 9.44m 2.71m 8.43m
P=2.84 182 5.74 2.45 158 360
S9 M=456u 535u 511u 1.06m 491u 1.08m
P=353 176 164 352 13.8 0.168
S10 M=8.62m 8.87m 0.014 7.73m 0.012 8.61m
P=183 0.053 178 350 4.50 2.15
S11 M=0.010 0.011 0.020 0.013 0.017 0.014
P=177 356 174 349 2.41 360
S12 M=7.54m 8.43m 0.016 0.011 0.013 0.012
P=184 359 177 352 5.210 1.76
S13 M=423u 472u 895u 697u 918u 827u
P=181 9.33 178 355 6.95 5.18
N1 M=302u 293u 478u 610u 735u 552u
P=202 150 10.0 351 2.03 193
N2 M=7.46m 7.62m 0.014 0.010 0.015 0.015
P=183 185 0.555 348 2.33 184
N3 M=0.010 0.011 0.018 0.012 0.019 0.018
P=183 186 0.954 347 2.57 184
N4 M=8.12m 8.42m 0.011 6.58m 0.012 9.92m
P=184 184 360 343 1.32 184
N5 M=201u 111u 652u 900u 86%u 1.26m
P=205 136 0.569 349 1.38 181
N6 M=0.014 0.016 4.28m 7.71m 4.25m 9.68m
P=2.66 2.61 179 2.75 177 181
N7 M=0.021 0.024 464u 0.013 87%u 0.017
P=4.04 2.32 202 360 143 182
N8 M=0.014 0.017 3.39m 6.85m 3.38m 0.010
P=3.34 2.28 0.195 355 5.00 182
N9 M=367u 783u 427u 942u 605u 1.50m
P=325 347 160 1.73 176 179
N10 M=7.52m 9.97m 0.012 0.010 0.013 0.011
P=185 182 180 10.4 182 186
Ni1 M=0.010 0.014 0.019 0.017 0.020 0.019
P=179 178 177 6.54 179 183
N12 M=6.99m 9.54m 0.015 0.014 0.016 0.015
P=178 178 176 5.73 178 183
N13 M=434u 561u 981u 1.04m 1.18m 1.23m
P=188 183 170 5.53 179 185

m =X 10‘3, u=x 10 '6, M = magnitude, P = phase in degrees
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TABLE A-7

Test t17tr Damaged (First Stage) Forced-Vibration Coarse-Sensor
Global Polynomial Curve-Fit Results

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
F=2.52 Hz, F=3.00 Hz, F=3.57 Hz, F=4.12 Hz, =4.21 Hz, F=4.69 Hz,
Location | ¢=1.20 % £=0.80 % (=0.87 % {=1.00 % {=1.04 % £=0.90 %
S1 M=3.95m 3.70m 8.17m 9.66m 8.19m 7.19m
P=178 159 176 357 181 2.48
S2 M=0.218 0.171 0.443 0.393 0.392 0.346
P=170 168 179 3.79 178 3.47
S3 M=0.320 0.258 0.597 0.497 0.532 0.449
P=171 169 179 4.18 178 3.62
S4 M=0.257 0.218 0.404 0.293 0.363 0.278
P=175 172 180 5.68 178 4.15
S5 M=6.08m 3.76m 0.024 0.034 0.024 0.035
P=113 103 175 3.03 177 3.97
S6 M=0.454 0.433 0.151 0.248 0.090 0.219
P=358 355 349 356 359 358
S7 M=0.732 0.715 0.049 0.473 0.020 0.423
P=4.27 359 316 0.468 142 1.54
S8 M=0.491 0.490 0.119 0.275 0.120 0.255
P=4.74 359 189 1.98 175 1.98
S9 M=0.015 0.016 0.016 0.035 0.012 0.034
P=6.04 4.92 345 353 7.55 0.641
S10 M=0.268 0.273 0.435 0.294 0.367 0.275
P=181 177 358 354 0.742 1.68
S11 M=0.314 0.322 0.603 0.465 0.494 0.421
P=175 172 356 353 358 359
S12 M=0.230 0.246 0.497 0.403 0.411 0.374
P=179 176 359 356 1.27 1.44
S13 M=0.013 0.014 0.019 0.019 0.025 0.020
P=161 175 6.35 5.36 .86 11.1
N1 M=0.010 6.18m 0.015 0.018 0.020 0.017
P=194 346 183 0.438 359 190
N2 M=0.263 0.222 0.448 0.371 0.471 0.453
P=186 357 181 355 0.170 183
N3 M=0.372 0.322 0.581 0.451 0.617 0.565
P=186 358 182 355 0.320 183
N4 M=0.279 0.242 0.368 0.248 0.390 0.315
P=185 356 181 353 359 183
N5 M=4.90m 1.73m 0.024 0.031 0.028 0.039
P=226 203 175 356 0.386 181
N6 M=0.494 0.468 0.125 0.238 0.126 0.273
P=4.80 177 4.32 5.12 173 181
N7 M=0.741 0.714 0.011 0.418 0.024 0.486
P=5.93 178 101 2.80 119 181
N8 M=0.486 0.490 0.123 0.239 0.115 0.291
P=3.07 177 177 359 3.76 181
N9 M=0.019 0.030 0.013 0.032 0.013 0.044
P=346 199 336 10.7 169 175
N10 M=0.278 0.292 0.396 0.283 0.420 0.332
P=181 358 359 9.98 178 181
NI1 M=0.353 0.390 0.599 0.478 0.637 0.557
P=179 357 358 9.65 177 181
NI12 M=0.247 0.268 0.463 0.394 0.491 0.452
P=176 358 358 7.85 176 181
N13 M=0.013 0.014 0.026 0.023 0.036 0.032
P=176 7.86 355 6.92 176 184

m =X 10'3, u=x100 M= magnitude, P = phase in degrees
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TABLE A-8

Test t18tr Damaged (Second Stage) Forced-Vibration Coarse-Sensor
Global Polynomial Curve-Fit Results

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
F=2.52 Hz, F=2.99 Hz, F=3.52 Hz, F=4.09 Hz, F=4.19 Hz, F=4.66 Hz,
Location | =133 % £=0.82 % £=0.95 % £=0.85 % £=0.65 % £=0.84 %
S1 M=5.56m 3.15m 6.18m 9.92m 7.41m 6.28m
P=178 162 356 5.32 173 3.56
S2 M=0.226 0.194 0.393 0.339 0.353 0.332
p=173 174 1.48 7.73 176 3.38
S3 M=0.316 0.285 0.530 0.421 0.475 0.420
P=165 174 2.33 9.00 175 1.53
S4 M=0.246 0.236 0.355 0.247 0.324 0.257
pP=171 178 2.79 10.8 176 2.00
S5 M=0.037 8.37m 0.017 0.032 0.024 0.034
P=237 159 339 356 180 357
S6 M=0.425 0.435 0.134 0.209 0.096 0.230
P=353 357 172 360 13.4 355
S7 M=0.684 0.711 0.043 0.407 0.047 0.429
P=359 0.703 135 4.70 83.6 358
S8 M=0.475 0.495 0.105 0.248 0.098 0.263
P=359 360 13.6 6.06 164 358
S9 M=0.016 0.016 0.015 0.028 0.014 0.035
P=359 359 165 358 21.8 360
S10 M=0.255 0.263 0.392 0.224 0.344 0.265
P=174 178 181 357 5.44 358
S11 M=0.306 0.307 0.558 0.361 0.472 0.408
P=170 174 178 355 3.69 356
1s12 M=0.225 0.234 0.464 0.322 0.395 0.368
p=171 178 181 359 6.72 358
S13 M=9.16m 0.015 0.025 0.021 0.026 0.27
P=167 188 185 358 6.49 357
N1 M=0.013 7.03m 0.013 0.018 0.022 0.016
P=197 339 4.34 0.301 8.60 191
N2 M=0.223 0.211 0.384 0.307 0.459 0.444
P=182 360 2.46 357 4.90 180
N3 M=0.331 0.313 0.502 0.369 0.604 0.562
P=183 0.619 3.56 357 5.33 181
N4 M=0.260 0.229 0.311 0.197 0.381 0.311
P=184 359 2.28 355 4,77 182
N5 M=7.27m 4.84m 0.019 0.027 0.026 0.036
P=201 221 348 353 1.53 179
N6 M=0.441 0.464 0.123 0.196 0.128 0.270
P=1.68 181 184 9.22 177 179
N7 M=0.680 0.711 0.015 0.344 0.032 0.493
P=3.20 181 187 6.38 130 179
N8 M=0.454 0.479 0.088 0.188 0.112 0.295
P=358 180 4.20 4.15 12.3 178
N9 M=0.014 0.022 9.05m 0.026 0.016 0.042
P=338 176 175 9.87 177 176
N10 M=0.250 0.279 0.343 0.243 0.410 0.320
P=176 0.511 180 15.1 180 180
N11 M=0.329 0.377 0.534 0.419 0.636 0.549
P=173 0.484 180 13.2 180 179
NI12 M=0.221 0.258 0.415 0.343 0.486 0.441
P=170 0.259 179 12.5 179 179
N13 M=0.014 0.016 0.027 0.024 0.034 0.033
P=179 3.30 181 14.0 181 179

m=X 10"3, u=x 10 ‘6, M = magnitude, P = phase in degrees
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TABLE A-9

Test t19tr Damaged (Third Stage) Forced-Vibration Coarse-Sensor
Global Polynomial Curve-Fit Results

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
F=2.46 Hz, F=2.95 Hz, | F=3.48 Hz, F=4.04 Hz, F=4.14 Hz, F=4.58 Hz,
Location | ¢=0.82 % (=0.89 % £=0.92 % {=0.81% (=0.62 % (=1.06 %
S1 M=4.48m 2.90m 8.38m 0.011 0.010 6.52m
P=171 149 3.78 357 171 15.3
S2 M=0.200 0.182 0.433 0.352 0.374 0.315
P=174 178 2.94 6.36 174 7.43
S3 M=0.295 0.277 0.583 0.441 0.502 0.409
P=175 179 3.00 7.15 174 7.26
S4 M=0.231 0.230 0.392 0.259 0.342 0.250
P=179 182 4.36 8.92 176 8.44
S5 M=3.07m 429u 0.021 0.034 0.023 0.035
P=162 53.2 6.78 2.97 172 4.35
S6 M=0.389 0.441 0.152 0.228 0.092 0.236
P=360 359 175 357 11.6 357
S7 M=0.636 0.730 0.051 0.444 0.045 0.452
P=4.92 2.62 158 2.53 96.2 0.738
S8 M=0.427 0.498 0.105 0.267 0.111 0.284
P=3.71 1.67 10.5 3.66 166 0.729
59 M=0.012 0.016 0.016 0.032 0.011 0.036
P=4.72 5.46 166 355 17.0 0.271
S10 M=0.250 0.277 0.423 0.255 0.351 0.247
P=181 178 180 355 3.76 0.944
S1t M=0.293 0.322 0.597 0.409 0.478 0.388
P=176 174 177 354 2.03 359
S12 M=0.218 0.252 0.501 0.366 0.403 0.360
P=180 177 180 357 5.12 1.18
S13 M=0.014 0.017 0.032 0.025 0.028 0.027
P=180 177 179 355 5.08 1.70
N1 M=9.50m 8.38m 0.019 0.020 0.024 0.015
P=194 355 7.78 357 4.88 204
N2 M=0.208 0.234 0.428 0.354 0.454 0.417
P=185 0.612 2.78 354 4.06 186
N3 M=0.297 0.340 0.559 0.435 0.597 0.518
P=185 1.08 2.90 354 4.10 186
N4 M=0.226 0.252 0.349 0.240 0.373 0.279
P=184 359 2.03 351 3.04 186
N5 M=2.68m 1.24m 0.19 0.029 0.025 0.035
P=209 321 2.39 354 2.85 184
N6 M=0.405 0.480 0.129 0.205 0.132 0.284
P=4.30 181 181 6.78 177 180
N7 M=0.625 0.737 7.65m 0.375 0.033 0.510
P=5.40 182 197 3.87 143 181
N8 M=0.418 0.504 0.114 0.215 0.107 0.300
P=3.01 180 1.31 359 7.60 181
N9 M=0.013 0.021 0.012 0.025 0.015 0.043
P=2.24 174 166 6.23 172 178
N10 M=0.226 0.260 0.366 0.234 0.388 0.298
P=175 359 176 9.30 176 179
N11 M=0.313 0.378 0.588 0.423 0.640 0.544
P=179 2.30 180 11.7 179 182
N12 M=0.217 0.261 0.458 0.351 0.493 0.439
P=177 2.89 179 10.7 178 182
N13 M=0.011 0.021 0.036 0.026 0.036 0.038
P=174 12.7 176 10.4 178 181

m=X 10‘3, u=x 10 '6, M = magnitude, P = phase in degrees

110




TABLE A-10

Test t22tr Damaged (Final Stage) Forced-Vibration Coarse-Sensor
Global Polynomial- Curve-Fit Results

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
F=2.30 Hz, F=2.84 Hz, F=3.49 Hz, F=3.99 Hz, F=4.15 Hz, F=4.52 Hz,
Location | {=1.60 % £=0.66 % {=0.80 % {=0.80 % £=0.71 % £=1.06 %
S1 M=8.40m 6.64m 0.016 9.55m 0.016 0.012
P=135 141 9.20 337 176 8.34
S2 M=0.101 0.247 0.405 0.278 0.414 0.365
P=161 176 1.92 1.73 180 3.25
S3 M=0.143 0.365 0.543 0.339 0.553 0.469
P=162 175 2.20 1.39 180 3.56
S4 M=0.110 0.292 0.364 0.193 0.377 0.284
P=169 179 3.68 1.98 181 4.40
S35 M=0.013 2.19m 0.021 0.022 0.025 0.037
P=152 185 13.8 360 176 359
S6 M=0.204 0.495 0.135 0.220 0.090 0.282
P=347 355 176 4.91 360 355
S7 M=0.368 0.797 0.036 0.411 0.019 0.513
P=354 359 177 5.90 160 359
S8 M=0.251 0.550 0.102 0.236 0.118 0.311
P=356 358 6.93 6.02 179 359
S9 M=7.19m 0.015 0.015 0.028 0.011 0.038
P=67.0 360 158 357 5.34 357
S10 M=0.131 0.322 0.399 0.249 0.370 0.312
P=168 178 181 6.03 1.09 359
S11 M=0.177 0.384 0.560 0.394 0.498 0.485
P=169 174 179 3.46 359 357
S12 M=0.118 0.297 0.469 0.352 0.419 0.444
P=170 179 182 6.69 1.60 359
S13 M=0.013 0.017 0.029 0.022 0.028 0.032
P=113 182 174 9.86 1.84 4.16
N1 M=0.012 478u 0.021 0.022 0.027 9.95m
P=207 351 17.3 9.75 1.83 199
N2 M=0.204 0.104 0.418 0.435 0.480 0.383
P=181 0.076 4.76 4.94 1.83 180
N3 M=0.292 0.154 0.543 0.546 0.630 0.487
P=179 360 5.02 5.28 1.98 180
N4 M=0.232 0.122 0.341 0.309 0.395 0.272
P=178 359 4.32 3.86 1.35 180
N5 M=0.014 741u 0.022 0.027 0.027 0.029
P=156 85.5 17.3 10.8 2.58 180
N6 M=0.500 0.298 0.130 0.140 0.145 0.171
P=2.24 179 181 8.63 182 179
N7 M=0.964 0.559 0.013 0.386 0.026 0.446
P=3.61 180 167 6.93 192 179
N8 M=0.535 0.323 0.105 0.170 0.111 0.199
pP=1.25 179 6.16 4.28 1.39 177
N9 M=0.023 0.016 9.99m 0.023 0.015 0.034
P=343 167 148 0.811 183 173
N10 M=0.252 0.116 0.338 0.265 0.398 0.275
P=177 353 178 3.58 179 179
Ni1 M=0.342 0.169 0.563 0.482 0.679 0.510
P=182 357 182 8.37 182 181
N12 M=0.226 0.108 0.435 0.388 0.519 0.401
P=181 355 182 7.92 182 181
N13 M=0.011 6.02m 0.033 0.031 0.041 0.034
P=187 0.846 172 9.52 183 179

m=X 10'3, u=x 10 '6, M = magnitude, P = phase in degrees
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APPENDIX B

NUMERICAL MODE SHAPE DATA USED WITH DAMAGE IDENTIFICATION

ALGORITHMS

TABLE B-1

Undamaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra

Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3: 5.09 Hz
N-1 0.33 1.21 -11.13
N-2 12.86 47.10 103.14
N-3 28.82 107.82 139.85
N-4 42.13 160.02 94.54
N-5 47.34 182.16 -0.48
N-6 42.44 165.61 -95.68
N-7 29.29 116.47 -141.21
N-8 13.21 54.02 -104.12
N-9 0.32 1.22 12.12

TABLE B-2
Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra
Damage Case A-1

Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3: 5.09 Hz
N-1 0.33 1.22 -11.12
N-2 12.61 46.30 103.36
N-3 28.34 106.08 140.26
N-4 41.51 157.54 95.01
N-5 46.73 179.45 -0.08
N-6 41.96 163.25 -95.50
N-7 29.02 114.89 -141.25
N-8 13.14 53.35 -104.24
N-9 0.32 1.22 12.16

TABLE B-3
Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra
Damage Case A-2

Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3: 5.09 Hz
N-1 0.33 1.20 -11.11
N-2 12.30 45.32 103.42
N-3 27.76 103.96 140.38
N-4 40.77 154.55 95.16
N-5 46.00 176.19 0.04
N-6 41.39 160.36 -95.43
N-7 28.69 112.95 -141.25
N-8 13.03 52.51 -104.26
N-9 0.32 1.21 12.17
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TABLE B4

Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra

Damage Case A-3

Location Mode 1: 3.63 Hz Mode 2: 3.84 Hz Mode 3: 5.09 Hz
N-1 0.00 0.04 -10.74
N-2 0.13 2.59 106.29
N-3 0.24 5.26 146.45
N-4 0.31 7.34 103.45
N-5 0.32 8.27 8.58
N-6 0.23 6.65 -91.43
N-7 0.12 4.18 -141.45
N-8 0.03 1.72 -105.98
N-9 0.00 0.04 13.08

TABLE B-5
Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra
Damage Case A-4

Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3: 5.07 Hz
N-1 0.56 1.51 -12.65
N-2 27.54 59.45 132.86
N-3 56.82 130.20 216.26
N-4 71.69 183.52 112.74
N-5 72.93 201.91 -24.54
N-6 59.53 177.98 -140.11
N-7 36.44 120.68 -183.48
N-8 13.62 53.27 -127.74
N-9 0.47 1.37 11.07

TABLE B-6
Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra
Damage Case A-5

Location Mode 1: 3.63 Hz Mode 2: 3.85 Hz Mode 3: 5.07 Hz
N-1 0.30 0.26 -11.40
N-2 4.70 8.54 103.61
N-3 15.39 18.85 105.03
N-4 23.78 25.88 63.88
N-5 27.19 27.45 -2.19
N-6 24.69 23.23 -64.22
N-7 17.38 14.96 -92.35
N-8 8.10 6.12 -67.28
N-9 0.20 0.18 6.75
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TABLE B-7

Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra

Damage Case A-6
Location Mode 1: 3.69 Hz Mode 2: 3.85 Hz Mode 3: 5.07 Hz
N-1 0.00 0.24 -11.95
N-2 0.15 11.76 158.46
N-3 0.35 24.67 265.69
N-4 0.56 33.25 153.83
N-5 0.67 36.12 -13.13
N-6 0.66 32.54 -179.16
N-7 0.44 20.43 -189.88
N-8 0.20 8.23 -121.91
N-9 0.00 0.22 9.74
TABLE B-8
Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra
Damage Case A-7
Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3: 5.09 Hz
N-1 0.33 1.22 -11.18
N-2 12.53 46.16 103.44
N-3 28.18 105.75 140.40
N-4 41.29 157.06 95.02
N-5 46.49 178.90 -0.22
N-6 41.76 162.75 -95.70
N-7 28.89 114.55 -141.45
N-8 13.08 53.19 -104.36
N-9 0.32 1.22 12.11
TABLE B-9
Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra -
Damage Case A-8
Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3: 5.09 Hz
N-1 0.33 1.21 -11.07
N-2 12.76 46.79 103.68
N-3 28.63 107.16 140.53
N-4 41.89 159.09 95.07
N-5 47.11 181.16 -0.31
N-6 42.26 164.74 -95.89
N-7 29.19 115.89 -141.65
N-8 13.18 53.77 -104.49
N-9 0.32 1.23 12.13
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TABLE B-10

Damaged Mode Shape Data from Simulated Refined-Sensor, Cross-Power Spectra
Alternate Undamaged Case A-9

Location Mode 1: 3.79 Hz Mode 2: 3.87 Hz Mode 3. 5.09 Hz
N-1 0.26 1.29 -7.49
N-2 5.72 44,50 69.39
N-3 17.50 109.69 94.01
N4 30.33 171.03 63.36
N-5 38.24 202.40 -0.77
N-6 37.89 191.23 -64.93
N-7 29.21 140.90 -95.54
N-8 15.09 69.43 -70.36
N-9 0.28 1.32 8.27
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